

Biomonitoring research on persistent organic pollutants in the surrounding environment of the Cement plant Turňa nad Bodvou, Slovakia, 2023

A.Arkenbout, K.J.A.M. Bouman

March, 2024

Biomonitoring research on persistent organic pollutants in the surrounding environment of the Cement plant Turňa nad Bodvou, Slovakia, 2023

Acknowledgements

Thank you to Zero Waste Europe for enabling this research on persistent organic pollutants (POPs). Special thanks to all the participants in the villages of Dvornike, Hosťovce, Zádiel, Včeláre and Turňa nad Bodvou for their cooperation and trust in allowing us to analyse their backyard chicken eggs, vegetation, fruit, and roof dust. Your contribution has greatly enhanced our understanding of the environmental health in your communities.

AUTHORS:

A. ARKENBOUT K.J.A.M. BOUMAN Head of research, ToxicoWatch Foundation Research, ToxicoWatch Foundation

HARLINGEN, THE NETHERLANDS, TOXICOWATCH FOUNDATION, March 2024 PUBLICATION NUMBER: 2024-SKL-01 CLIENT: Zero Waste Europe

Disclaimer:

This biomonitoring research is carried out by ToxicoWatch Foundation on behalf of Zero Waste Europe. ToxicoWatch assumes no liability or responsibility to any third party for any loss or damage arising from the interpretation or use of the information contained in this report or reliance on any views expressed herein.

Copyright © 2024 TOXICOWATCH FOUNDATION

This publication contains material written and produced for public distribution. Permission to copy or disseminate all or part of this material is granted provided that the copies are not made or distributed for commercial advantage and that they are referenced by title and credited to the ToxicoWatch Foundation. ToxicoWatch is accredited with Public Benefit Organisation (PBO) status.

All photographs, graphs and tables are designed by ToxicoWatch.

www.toxicowatch.org

Table of content

TABLE OF CONTENT	3
ACRONYMS	4
INTRODUCTION	5
SAMPLING	6
Eggs Fruit Vegetation (Mosses /Pine needles) Roof dust Water/Sediment	6 6 7
ANALYSIS METHODS	7
RESULTS	8
EGGS – DIOXINS EGGS – PFAS FRUIT MOSSES. PINE NEEDLES. ROOF DUST. WATER / SEDIMENT HEAVY METALS	
CONCLUSION	
ANNEXE	
ANNEXE 1: ANALYSIS METHODS ANNEXE 2: RESULTS GC-MS ANALYSES ON EGGS OF BACKYARD CHICKEN ANNEXE 3: DL-PCB ANNEXE 4: DIOXINS AND PFAS IN EGGS ANNEXE 5: FRUIT –DIOXINS, PAH AND PFAS ANNEXE 5: FRUIT –DIOXINS, PAH, AND HEAVY METALS ANNEXE 6: PINE NEEDLES - DIOXINS, PAH, AND HEAVY METALS	
ANNEXE 8: HEAVY METALS	24

Acronyms

APCD	Air Pollution Control Devices
BAT	Best Available Techniques
BEP	Best Environmental Practice
BEQ	Bioanalytical EQuivalents
BFR	Brominated Flame Retardants
BMI	Body Mass Index
BREF	Best Available Techniques (BAT) Reference Document for Waste Incineration
BBT	Best Available Techniques (BAT)
dl-PCB	Dioxin-Like Polychlorinated Biphenyls
DR CALUX®	Dioxin Responsive Chemical-Activated LUciferase gene eXpression
EFSA	European Food and Safety Authority
GC-MS	Gas Chromatography Mass Spectrometry GC-MS
GenX	Group of fluorochemicals related to of hexafluoropropylene oxide dimer acid (HFPO-DA)
i-PCB	Indicator Polychlorinated Biphenyl
LB	Lower Bound
LOD	Limit of Detection
LOQ	Limit of Quantification
MB	Medium Bound
MWI	Medical Waste Incineration
MSWI	Municipal Solid Waste Incineration
ndl-PCB	Non-Dioxin-Like Polychlorinated Biphenyl (Non-Dioxin-Like PCB)
ng	Nanogram; 10 ⁻⁹ gram
OTNOC	Other Than Normal Operating Conditions
PAH	Polycyclic Aromatic Hydrocarbons
РСВ	Polychlorinated Biphenyl
PCDD	Polychlorinated Dibenzodioxins
PCDF	Polychlorinated Dibenzofurans
PBDD/F	Polybrominated-dibenzodioxins and furans
pg	Picogram; 10 ⁻¹² gram
POP	Persistent Organic Pollutants
SVHC	Substances of Very High Concern
TCDD	2,3,7,8-tetrachloordibenzo- <i>p</i> -dioxine
TDI	Tolerabele Daily Intake = Aanvaardbare Dagelijkse Inname
TEF	Toxic Equivalency Factor
TEQ	Toxic Equivalents
TW	ToxicoWatch
TWI	Tolerable Weekly Intake
UB	Upper Bound (UB)
UPOP	Unintentional POP (Persistent Organic Pollutants)
μg	Microgram 10 ⁻³ gram
WtE	Waste to Energy (waste incinerator)

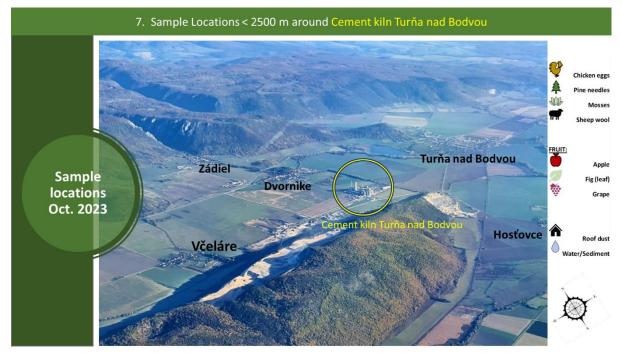
Introduction

The civic organisation Zelený živel o.z. representing environmentally conscious residents in Turnianska Kotlina, took the initiative in 2023 to contact Zero Waste Europe and ToxicoWatch (TW) for independent research on the deposition of persistent organic pollutants (POPs) such as dioxins (PCDD/F/dl-PCB), Polycyclic Aromatic Hydrocarbons (PAH) and PFAS, as well as heavy metals in the environment surrounding the cement kiln Cementáreň Turňa nad Bodvou, located in the Košice Region in Slovakia. According to the Turňa nad Bodvou Cement Plant's website¹, the plant is equipped with state-of-the-art BAT/BREV equipment. Waste gases, with a volume flow rate of 165000 m³/hour are discharged into the air through a fabric filter and subsequently through a chimney with a height of 51.0 meters. The dust separated by the fibre filters is transported as dried clay to the raw material landfill. The conveyor belts used for transporting the clay for crushing within the plant to the sieving station are dust-tight.² Cement production ranks among the energy-intensive industries. This plant, supported by EU grants, burns waste materials, ranging from plastic agglomerate, worn-out old used car tyres, and PCB oil-containing waste ³ - as a sustainable alternative to fossil fuels. There are plans to increase waste burning from 65,000 to 115,000 tons annually, a nearly 50% increase. Cement kilns are utilised for the destruction of persistent organic pollutants such as PCBs and PFAS, owing to the higher combustion temperatures they provide.

Emissions of pollutants must adhere to the emission limits set by EU Decree No 410/2003 Coll. (Air Act No. 137/2010 Coll. repeals several regulations) as amended for cement rotary kilns and should refer to Industrial Emissions Directive and BREF 2023.⁴ It's noteworthy that emissions of dioxins are measured only a few hours per year. The last publication dates to 2018 with limited information on dioxin emissions and lacking detailed TEQ distribution data. No recent data are available on emissions and depositions of other persistent organic pollutants (POPs), like PAH, fluorine compounds (PFAS), and dioxin-like PCBs. This TW research does not (yet) include monitoring of brominated dioxins (PBDD/F) or other halogenated POPs but might be necessary to investigate the emission of these abundant flame retardants.

In this report, TW's research focuses on assessing the environmental impact around the cement kiln Turňa nad Bodvou. We employ biomonitoring techniques using eggs from backyard chickens, as well as analysing fruit and vegetation for dioxins, PFAS, PAH and heavy metals. Alongside cement production, the region of Košice faces additional industrial sources of air pollution. Notably, in Včeláre and Hosťovce quarries, limestone, a basic raw material for cement production, is extracted. Adjacent to the cement kiln are ecologically significant areas, including the Protected Bird Area Slovak Karst (SKCHVÚ 027) and the National Nature Reserve - Zádielska Gorge, which forms part of the Slovak Karst National Park.

¹ <u>https://www.danucem.com/site/2/Turňa -nad-bodvou-cement-plant</u>


² Increase in the output of the furnace line VSH, a.s. Turňa nad Bodvou to 3500 tons of clinker per day - OBJECTIVE

³ Wastes classified under catalogue numbers 191210, 191211, 19121212, 19121212, 191214 and 160119. In addition, wastes are classified under catalogue numbers 191204 (Plastic agglomerate) and 160103 (Worn tyres).

⁴ https://eeb.org/wp-content/uploads/2023/04/Upgrading-Europes-air.pdf

Sampling

This biomonitoring research comprehended the biomarkers: eggs of backyard chickens, eggshells, pine needles (*Picea abies*), mosses (*Bryophyta*), and fruits such as apples, grapes, and figs leaves, as well as the matrices roof dust, sediment, and water. The research area covers the environment of five (5) surrounding villages of the cement kiln within a radius of 2500 meters. The afore-mentioned samples are taken from four (4) locations in Dvornike, three (3) in Včeláre, three (3) in Hosťovce, two (2) in Zádiel and one (1) in Turňa nad Bodvou.

Eggs

At each egg location, TW collected (2) sets of 6 - 10 fresh eggs, mixed the total contents (egg yolk and white) and stored them in HDPE lab containers in a freezer until analyses in the lab. A questionnaire and a location inspection are conducted at every backyard chicken egg location by the TW team, to identify any potential confounder fact.

Fruit

TW collected samples of 200–300-gram fresh fruit from the fruit trees and shrubs, which were placed in special HDPE-lab bags, and stored in a cool, dry environment.

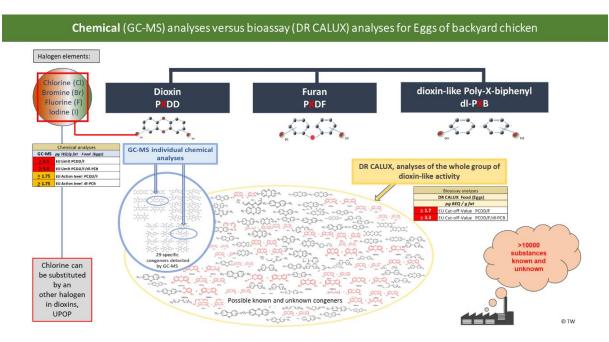
Vegetation (Mosses /Pine needles)

Vegetation samples, 200–300-grams of fresh pine needles from Pine trees – *Picea abies* and 200–300-gram mosses (*Bryophyta*), were collected from sheds' roofs at the same locations as the egg sampling. Additionally, moss (*Bryophyta*) samples were collected from a rural open field on a hill near Dvornike. All vegetation samples were stored in HDPE-lab bags, in a cool, dark, and dry environment.

Roof dust

Roof dust samples weighing 50 grams were collected by direct scraping from a roof at location *Dvornike*. At the location in *Zádiel*, roof dust that had naturally deposited in a metal bowl was sampled.

Water/Sediment


Water and sediment samples, totalling 200 ml water/sediment were collected directly from the downstream floating Bodvou, near the cement kiln using an HDPE lab container and stored cool and in a dark environment.

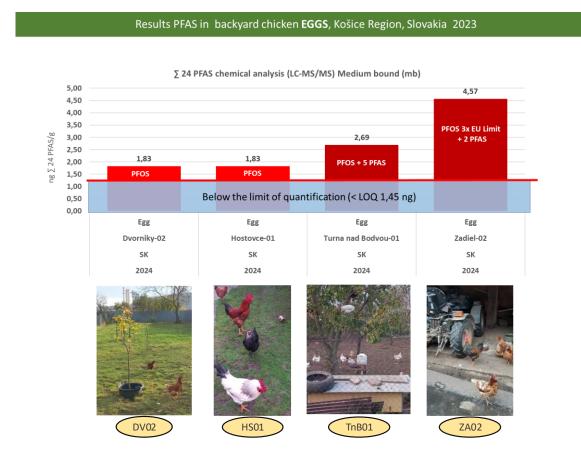
Analysis methods

The collected samples undergo analysis for persistent organic pollutants (POPs) using both bioassays (CALUX) and chemical analyses. The substances of interest are PCDD/F/dl-PCB (dioxins), Per- and poly-fluoroalkyl Substances (PFAS), Polycyclic Aromatic Hydrocarbons (PAH), and analyses of 6-14 heavy metals: Arsenic, Cadmium, Cobalt, Chromium, Lead, Nickel, Aluminium, Barium, Copper, Manganese, Mercury, Silver, Tin, and Zinc.

In this research, bioassay analysis employs DR CALUX[®] for dioxins/furans (PCDD/F) and dioxin-like PCBs (dL-PCBs), PAH CALUX for PAH substances, and FITC-T4 for the PFAS. Additionally, DR CALUX[®], PFAS CALUX[®], FITC-T4 and GC-MS are used for dioxins analysis in eggs, when results from DR CALUX exceed the EU Limits for eggs (1.7 pg BEQ/g fat for PCDD/F and 3.3. pg BEQ/g fat for the sum of dioxins (PCDD/F/dl-PCB)). The analysis is performed by BioDetection Systems in Amsterdam, the Netherlands (NL). BDS is accredited under RvA L401. Chemical analysis for PAH, PFAS and heavy metals are conducted by the accredited laboratory Normec, Groen Agro Control, located in Delft, the Netherlands (NL). PFAS chemical analyses employ LC-MS/MS to detect 24 PFAS, while heavy metals analysis utilises ICP-MS.

Results

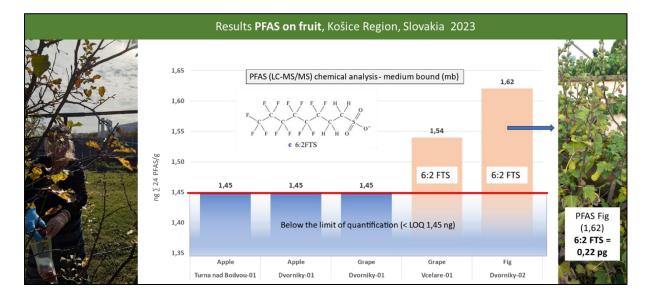
Eggs – Dioxins


In October 2023, TW sampled eggs from backyard chickens in six (6) private locations across five (5) neighbouring villages near the cement kiln. The values with the DR CALUX range from 1.2 - 9.8 pg BEQ/g fat. Three (3) locations exceeded the EU limit of 3.3 pg BEQ/g in backyard chicken eggs (DR CALUX), with 4.70 pg in *Hosťovce*, 4.80 pg in *Turňa nad Bodvou* and 9,80 pg BEQ/g fat (MB)⁵ in *Zádiel*. The DR CALUX method assesses the toxicity of dioxins, including brominated, fluorinated, and other (mixed) halogenated compounds. Chemical analyses, limited to 29 chlorinated dioxins, found in eggs of *Turňa nad Bodvou* 6.6 pg TEQ/g and in eggs of location *Zádiel* 8.8 pg TEQ/g. The levels of dl-PCB are from 0.1 - 6.7 pg TEQ/g. The highest-level dl-PCB is found in *Zádiel*. Chemical analysis confirmed this value with 6.6 pg TEQ/g in *Zádiel* and measured 3.9 pg TEQ/g in *Hosťovce*. Both exceed the EU action limit of 1.7 pg TEQ, where action is needed to determine the source. The congener patterns of dl-PCB closely resemble all these locations.

⁵ The concept which requires using half of the limit of quantification calculating the contribution of each congener

Eggs – PFAS

Chemical analysis (LC-MS/MS) detected in all the eggs PFAS. The highest concentration of PFAS was also found at location Zádiel-02 with **4.57** μ g \geq 24 PFAS /kg (mb). Notably, the concentration of PFOS, one of the 4 EU-regulated PFAS compounds exceeds the EU limit by 300%: 3.0 μ g/kg. In eggs at location Turňa nad Bodvou the PFOS level is 0.75 μ g/kg, just below the EU limit. Remarkable is the finding of 6 different PFAS compounds at location Zádiel-02. The PFAS results in eggs are also reported as medium bound (MB).⁶


⁶ The concept which requires using half of the limit of quantification calculating the contribution of each congener

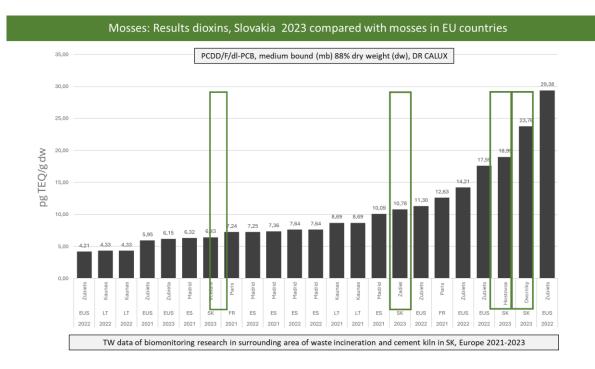
Fruit

Dioxins on fruit in *Turňa nad Bodvou* consist of 0.24 pg TEQ/wet weight (MB) for the sum of dioxins (PCDD/F/dl-PCB) and are just below the EU limit of 0.30 pg TEQ.⁷ Other locations measured all below the limit of quantification (<LOQ) for dioxins on fruit.

PFAS was detected in grapes in Včeláre, and fig leaves in *Dvornìke*, with 0.14 and 0.22 ng /gram dw (MB) for 6:2 Fluorotelomer sulfonate (6:2FTS), respectively. In the other locations, no PFAS could be found above the limit of quantification (>LOQ). Although the presence of 6:2 Fluorotelomer sulfonate (6:2FTS) is with great concern, because of the threat of serious health effects, and accumulation potential in people, this PFAS is (still) not included in the EU regulations.

The PAH levels on apples are 2.34 - 19.69 ng Benzo(a)Pyrene equivalent per gram/product with the PAH CALUX. The highest level was found in *Turňa nad Bodvou*. In grapes of *Dvornìke*, and *Včeláre* 19.1 ng and 32.5 ng \geq 16 PAH was found with the chemical analysis of GCMS.

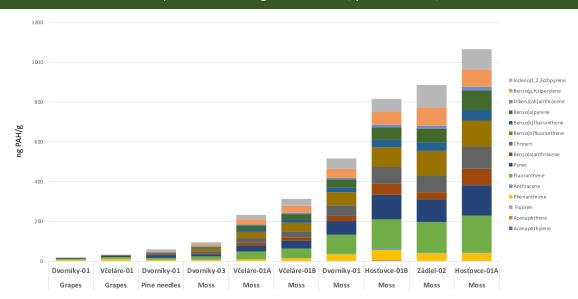
Mosses


The values of dioxins measured with DR CALUX in mosses at *Dvornike* are 3.3 pg TCDD eq./g, in mosses at the top of the hill north, and 23.8 pg TCDD eq./g in mosses on a roof 800 meters distance from the plant. Mosses collected from roofs in *Včeláre* dioxins measured 6.4 pg TCDD eq./g, in *Zádiel* 10.8 pg TCDD eq./g, and *Hosťovce* 19.0 pg TCDD eq./g dw (MB). The dioxin in all the moss samples exceeds the limit (for feed) of 0.83 pg TCDD eq./g 88% dry weight (medium bound, MB). High levels of dioxins were detected in all moss samples collected around the cement kiln. The levels of dioxins (PCDD/F/dl-PCBs) in mosses of Slovakia are among the highest observed in international biomonitoring research conducted by TW. Follow-up research in 2024 on moss in this Slovak area will expand to include moss samples from the Slovak Karst National Park region.

In the mosses of *Hosťovce* and *Dvornike*, values of 4.6 and 5.4 pg dl-PCB are found. Semi-continuous measurements of the flue gases are needed to determine the amount and patterns of emissions of dl-PCB by the cement kiln. In *Zádiel, Dvornike (Hill North)* and *Včeláre* 0.1, 0.2 and 1.4 pg TCDD eq./g were measured respectively. Notably, mosses exhibited higher levels of dioxins when compared to fruits or pine needles collected from the same locations. This disparity might be attributed to the fact that fruits mature from blossom to ripe fruit within a few months (May-September) and mosses grow continuously throughout the year and can live for many years.

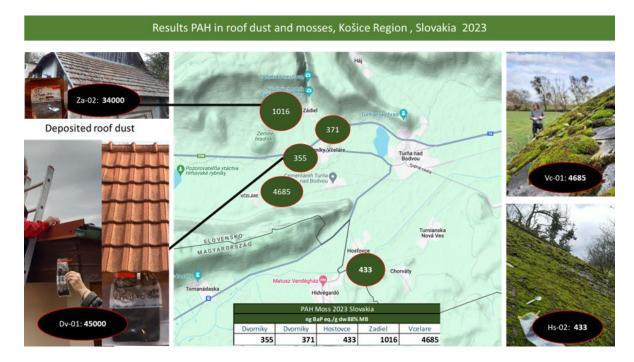
⁷ <u>2013/711/EU</u>

PAH in mosses varies from 355.4 - 4684.7 ng/g Benzo(a)pyrene equivalent with the PAH CALUX. The chemical analysis tool of the GC-MS on 16 PAH is in the range of 32.5 – 423 ng PAH/g. The lowest level of PAH is found at the top of the hill in *Dvornìke*, and the highest is found in *Hosťovce*. The bioassay PAH CALUX method measures the toxicity of the total PAH instead of 4-16 PAH congeners with chemical analyses (GC-MS).



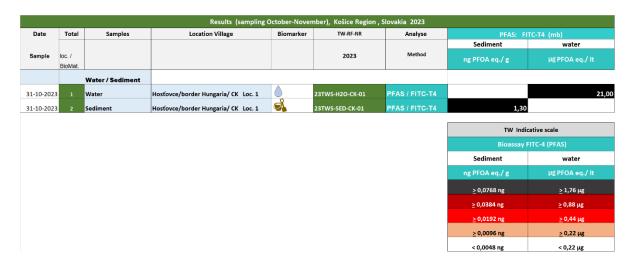
Pine needles

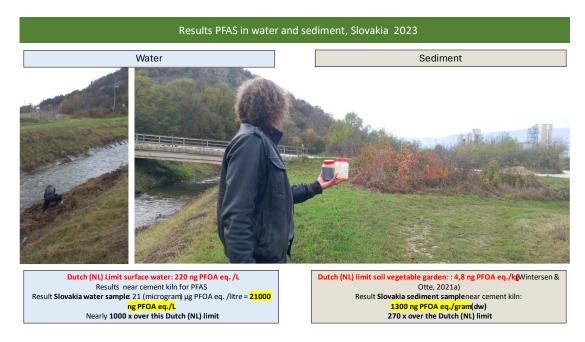
The levels of dioxins in pine needles measured with the bioassay DR CALUX are 0.77 pg TCDD eq./g in *Dvornike*, 1.52 pg TCDD eq./g in *Zádiel* and 2.85 pg TCDD eq./g in *Hosťovce* and *Včeláre*. PAH levels at these 4 locations in pine needles are 0.08 - 2.16 ng Benzo(a)Pyrene equivalent/g by PAH CALUX. The chemical method of PAH analyses measured a substantially higher level of 60.1 ng Σ 16 PAH/g in pine needles at a location in *Dvornike*.


Chemical analyses of PAH congeners in fruit, pine needles, and moss

Roof dust

Residents had reported concern about black dust accumulating on their roofs, windows, and windowpanes. In this research, high levels of PAH were found in roof dust sampled directly from a roof at location *Dvornike*, and from a metal bowl below the roof with naturally deposited dust in *Zádiel*. Dioxin levels in dust are 5.50 TCDD eq./g in *Dvornike* and 6.30 pg TCDD eq./g in *Zádiel*. The dl-PCBs are 1.20 and 2.20 TCDD eq./g, respectively.


The levels of PAH in *Zádiel* were 34,000 ng and in *Dvornìke* 45,000 ng Benzo(a)Pyrene equivalent per gram. However, on apples and grapes, much lower levels in the range of 0.32 - 2.50 ng Benzo(a)Pyrene equivalent per gram is found in uncleaned fruit samples.



Water / Sediment

A screening test with the FITC-T4 was conducted on water and sediment near the cement kiln. The level of PFAS in water was found to be **21,000 ng PFOA.eq. /I**. This result exceeds the Dutch limit of **0.3 nanograms per litre for PFOA** by **more than a factor of 70,000**.⁸ The FITC-T4 is a method that measures the total toxic effect of a mixture of PFAS congeners and is currently used by the Dutch government to screen for PFAS in surface water and inform policy measures for source reduction.

Sediment sampling downstream showed PFAS levels of **1,300 ng PFOA eq./g (dry weight)** with the method of FITC-T4. The Dutch regulation for soil is set at 0.048 ng PFOA eq./g. The result **greatly surpasses the Dutch regulation for soil**. Further research is necessary on water and sediment samples, as well as upstream samples in the Slovak Karst National Park to find out the extent of the pollution and if it is structural or an accidental disposal. Extended analyses will employ chemical analysis LC-MS/MS and the bioassay ERA-CALUX.

⁸ Smit C.E., Verbruggen E.M.J. (2022). Risicogrenzen voor PFAS in oppervlaktewaterRIVM-briefrapport 2022-0074 C.E. Smit | E.M.J. Verbruggen

Heavy metals

The results of analyses of heavy metals on mosses (*Bryophyta*) in *Zádiel are* 6293 mg/kg Zinc, 76 mg/kg Lead, 71 mg/kg Nickel, 918 mg/kg Manganese, 22 mg/kg Copper and 2.2 mg/kg Cadmium at location *Zádiel*. More research at reference locations is needed to interpret the results in the context of this region. The heavy metals levels in the mosses are among the highest recorded in biomonitoring research conducted by TW in Europe (2019-2023). In Annexe 7 the results in Slovakia are indicated in boxes for comparative results in Europe. Subsequent samples of mosses will be collected in the nearby Slovak Karst National Park and AGGTELEK National Park, located very close to the cement kiln in Hungary.

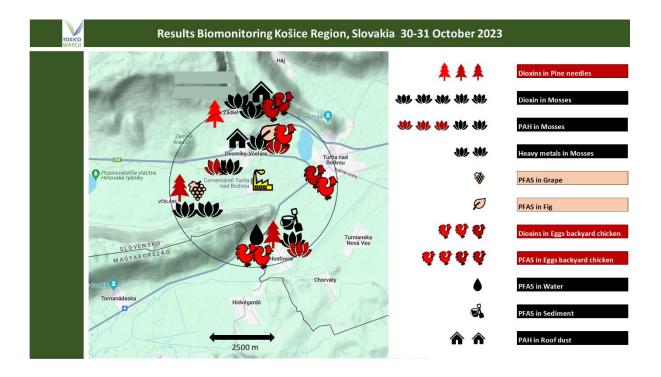
In pine needles - *Picea abies* in *Zádiel*, 592 mg/kg of Manganese is found. This result is high, compared to other TW-biomonitoring results in pine needles. Heavy metal analysis of eggshells of backyard chickens found 0.024 mg/kg Lead (Pb), 0.056 mg Nickel (Ni) and no Mercury (Hg) was detected above the limit of detection (< LOD). A relatively high content of Aluminium (Al) of 8.3 mg/kg in eggshells of *Dvornìke* needs to have more attention.

Heavy Metals mg/kg - Medium Bound (mb = LOD/2)														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
THE DEE NO	As		Ba	Cd	Cr	Co	Cu	Pb	Mn	Hg	Ni	Ag	Sn	Zn
TW-REF-NR	Arsenic	Aluminium	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury	Nickel	Silver	Tin	Zinc
23TWS-PN-HS02	0,066	99,000	67,000	0,005	0,280	0,061	4,800	0,330	591,000	0,026	0,280	0,005	0,040	41,00
23TWS-PN-VC02	0,083	155,000	61,000	0,011	0,330	0,025	3,100	0,410	13,000	0,028	0,240	0,005	0,053	36,00
23TWS-MOS-HS02	3,900	8789,000	141,000	1,300	23,000	17,000	26,000	47,000		0,086	26,000	0,110	2,200	135,00
23TWS-MOS-ZA01	4,500	14727,000	216,000	2,200	64,000	32,000	22,000	76,000	918,000	0,110	71,000	0,150	3,500	6293,00
23TWS-ES-Dv-02	0,010	8,300		0,005				0,024		0,005	0,056			

Results Heavy Metals in Pine needles, Mosses and Eggshells

 (A)
 (Co)
 (Ba)
 (Sn)
 (Ni)
 (Ag)
 (Min)
 (Zn)
 (As)
 (Pb)
 (Hg)
 (Cd)
 (Cu)
 (Cr)

 Absolution
 Cobustion
 To
 Methods
 Share
 None
 None
 None
 None
 None



Conclusion

The infographic below presents the initial findings from the TW biomonitoring research conducted around the cement kiln Cementáreň Turňa nad Bodvou situated in the Košice Region in Slovakia in 2023. Samples were taken within a radius of 2500 meters around the kiln, in the surrounding of five (5) villages and analysed for persistent organic pollutants (POPs), such as dioxins, PFAS, PAH and heavy metals. Eggs, pine needles, and mosses exhibited high concentrations of dioxins (PCCD/F/dI-PCB), polycyclic aromatic hydrocarbons (PAHs), and perand poly-fluoroalkyl substances (PFAS). In *Turňa nav Bodvou* six (6) PFAS compounds could be determined in eggs. PFOS level in eggs of location Zádiel- exceeding the EU limit for PFOS by 300%.

Of particular concern are the screening test results in the surface water stream near the cement kiln and sediment for the alarmingly high levels of PFAS. The heavy metal levels in mosses are among the highest recorded in TW-biomonitoring research conducted in Europe (2019-2023). Additionally, elevated levels of PAH were found in dust depositions on the roofs of houses in the villages of *Dvornike* and *Zádiel*.

Overall, the findings from this initial biomonitoring project raise worrying concerns regarding the presence of dioxins (PCDD/F/dl-PCB), PAH, PFAS and heavy metals in the environment of this region of the Košice. Further research is imperative to comprehend these contaminants' source(s) and deposition patterns.

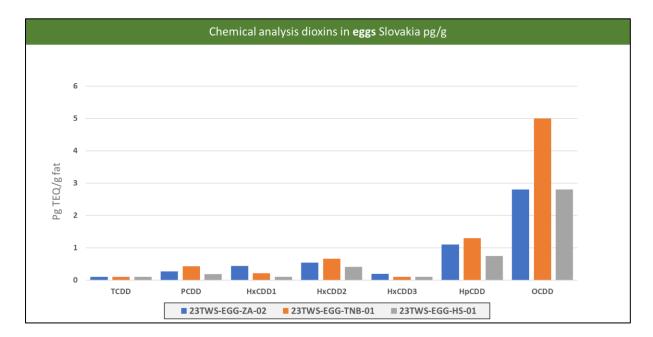
Annexe

Annexe 1: Analysis methods

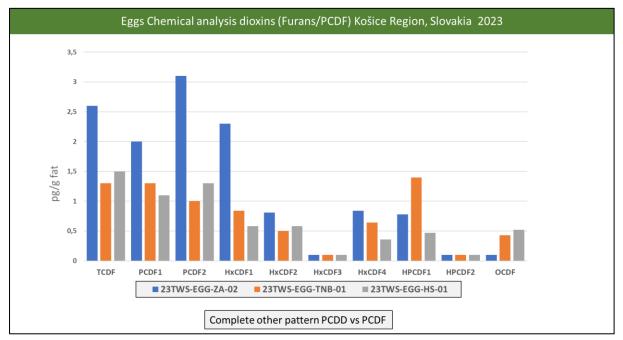
The biomarkers underwent analysis for persistent organic pollutants (POPs), like dioxins (PCDD/F/dl-PCB), Per- and polyfluoroalkyl Substances (PFAS), and Polycyclic Aromatic Hydrocarbons (PAH).⁹ The analyses were conducted using both bioassays and chemical analyses.

The DR CALUX bioassay[®] (Dioxin Responsive Chemical Activated Luciferase gene eXpression) was used to quantify dioxins/furans (PCDD/F) and dioxin-like PCBs (DL-PCBs). Results from DR CALUX[®] are reported in Bioassay Equivalent units, BEQ (pg BEQ/g fat). The term "BEQ" distinguishes results obtained from food samples from those obtained via chemical analysis (Gas Chromatography-Mass Spectrometry GC-MS, pg TEQ/g fat) which are reported in Toxic Equivalence (TEQ) units (pg TEQ/gfat). For non-food biomatrices like mosses or pine needles, results from DR CALUX are expressed in TCDD equivalent per gram of product (TCDD eq./g product) or abbreviated as pg TEQ/g product. The congener of TCDD refers to 2,3,7,8-Tetrachlorodibenzo-p-dioxin, as the most toxic dioxin congener.

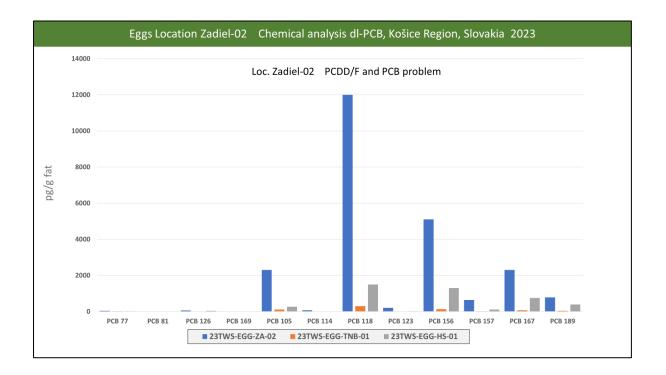
Chemical analysis by GCMS is conducted if the BEQ values from DR CALUX exceed the limit of 3.3 pg BEQ/g fat for PCDD/F/dl-PCB or 1.7 pg BEQ/g fat for PCDD/F. This analysis covers 7 dioxins (PCDDs), 10 furans (PCDFs) and 12 dioxin-like polychlorinated biphenyls (DL-PCBs). The **maximum limit value** for dioxins in eggs is set at 2.5 pg TEQ/g fat for PCDD/F, with the sum of dioxins and dioxin-like PCBs (dl-PCBs) limited to 5 pg TEQ/gram fat).

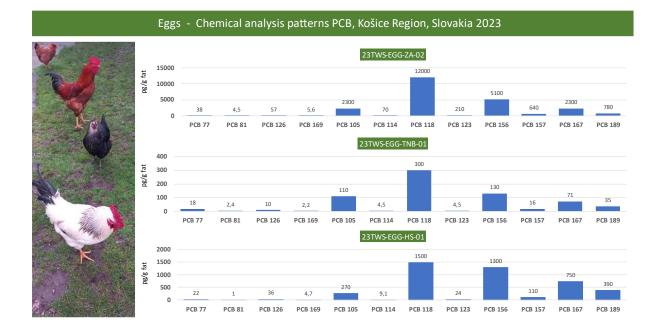

The action levels for **GC-MS** analysis **of** dioxins (PCDD/F) and dioxin-like PCBs (DL-PCBs) in hen eggs, established by 2013/711/EU¹⁰ are set at 1.75 pg TEQ/g fat. See Figure 5. These action levels aid competent authorities and operators in identifying contamination sources and implementing necessary measures for reduction or elimination.

PAH analysis is performed using the PAH CALUX assay, with results expressed in benzo[a]pyrene equivalency (B(a)P). PFAS analyses utilise FITC-T4assay, measuring the binding potency with thyroid hormone thyroxine (T4) and plasma transport protein Transthyretin (TTR) This assay involves fluorescent-labelled thyroxine (FITC-T4), consisting of fluorescein isothiocyanate (FITC) and L-thyroxine (T4), where the measurement is based on fluorescence differences between bound and non-bound FITC-T4 at the TTR-binding site. results from FITC-T4 analysis are reported in μ g PFOA equivalent per gram of product (PFPA/g product.


The DR CALUX[®], PFAS CALUX[®], FITC-T4 and GC-MS analyses on dioxins, are performed by BioDetection Systems, Amsterdam, the Netherlands, accredited under RvA L401.

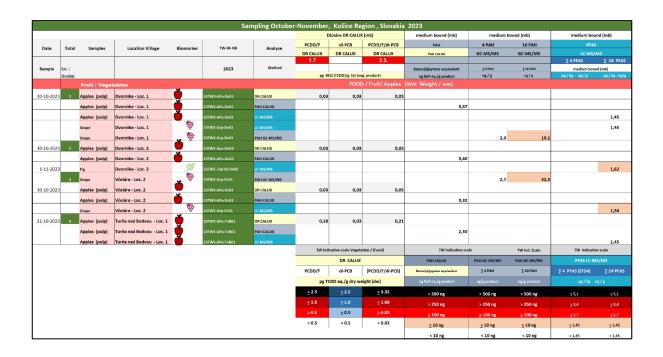
PFAS chemical analyses were performed on 24 PFAS using LC-LC-MS (A195), PAH with GC-MS/MS and the analyses of heavy metals with ICP-MS (A068+A095) were performed by Normec, Rotterdam NL, the Netherlands.


⁹ The term POP is used to refer to toxic chemicals that are resistant to degradation processes, travel over long distances, and bioaccumulate in the human body and ecosystems.



Annexe 2: Results GC-MS analyses on eggs of backyard chicken

Annexe 3: DI-PCB



Annexe 4: Dioxins and PFAS in eggs

						Dio	xins DR CAL	UX (mb)	D	ioxins GC-N	IS (mb)	PFAS		
Date	Total	Location Village	Biomarker	TW-RF-NR	Analyse	PCDD/F	dI-PCB	PCDD/F/dl-PCB	PCDD/F	dI-PCB	PCDD/F/dl-PCB	PFAS		Heavy Metals
Date	Total	cocación village	Biomarker	I WINFIN	Analyse	DR CALUX	DR CALUX	DR CALUX	GC-MS-ub	GC-MS	GC-MS	LC-MS/		
					Method	1.7		3.3.	2.5	1.75	5.0	Σ 4 PFAS	∑ 24 PFAS	14
Sample	loc. / BloMat.			2023	Method		medium bound (TCDD)/g fat		1.75 pg	1.75 TEQ/g fat (veg	product)	medium bour	ug/kg - ng/g	14
piling date	01010-000			1										
0-10-2023	1	Dvornike - Loc. Z	19	23TWS-Egg-Dv-02	DR CALUX	1,00	0,20	1,20						
		Dvornike - Loc. 2	, i	23TWS-Fgg-Dv-02	LC-MS/MS							0,58	1,83	
		Dvornike - Loc. 2 (eggshell)		231WS-Egg-Dv-02	Heavy Metals									6 HM
0-10-2023	2	Včeláre - Loc. 2	22	23TWS-Egg-Vc-01	DR CALUX	1,60	0.10	1,70						
0-10-2023		Zádiel - Loc. 1	ð i	Z3TWS-Egg-7e-01	DR CALUX	0,65	1,05	1,70						
1-10-2023		Zádiel - Loc. 2	ð	ZSTWS-Les-Ze-02	DR CALUX / GC-MS	3,10	6,70	9,80		6,6	8,80			
1 10 2020		Zádiel - Loc. 2	¥	23TWS-Enn-Za-02	LC-MS/MS		0,10	0,000	-,-	-,-	-,	3,15	4,57	
0 10 2023	5	Turňa nad Bodvou - Loc. 1	*	23TW5-Egg-Tn8-01	DR CALUX / GC-MS	2,70	2,10	4,80	1,3	1,1	2,50	3,23	4,57	
0-10-2025	,	Turňa nad Bodvou - Loc. 1	-	23TW5-Egg-TnB-01	LC-MS/MS	2,70	2,20	4,00	2,5	-,-	2,50	0.98	2,69	
	6	Hosťovce Loc. 1	1	23TW5-Egg-Hs-01	DR CALUX / GC-MS	2,20	2,50	4,70	1,1	3,9	4,90	0,50	2,05	
31-10-2023			•			2,20	2,50	4,70	1,1	3,3	4,50	0,58	1,83	
		Hosťovce Loc. 1		23TWS-Egg-Hs-01	LC-MS/MS						I	0,56	1,03	
											1	EU regulation (Upp	arbound - ph)	
												Chemical PFAS (I		
						TW	Indicative scal	e for Eggs	TM	V Indicative sca	e for Eggs	Eggs (1-1-		
							DR CALU			GC-MS		EU Limit	TW indicative	Heavy Meta
						PCDD/F	di-PCB	(PCDD/F/dI-PCB)	PCDD/F	dI-PCB	(PCDD/F/dl-PCB)	5 4 PFAS (EFSA)	Σ 24 PFAS	Heavy Meta
						1000/1	pg BEQ / g f		1000/1	pg TEQ /g 1		μg / kg -		
						≥ 6.6	> 2.5	≥ 10	≥ 7.5	P8 104 / 8	> 15.0	> 5.1	> 5.1	
						> 3.3	> 1.0	> 6.6	> 5.0		> 10.0	> 2.4	> 2.4	
						≥ 1.7	≥ 0.5	≥ 3.3	≥ 2.5	<u>≥</u> 1.75	≥ 5.0	≥ 1 .7	≥ 1.7	
						< 1.7	< 0.5	< 3.3	< 2.5	< 1.75	< 5.0	< 1.7	< 1.7	

Annexe 5: Fruit – Dioxins, PAH and PFAS

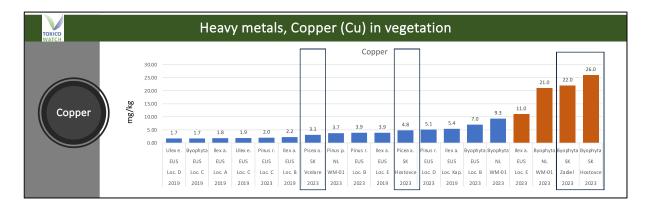


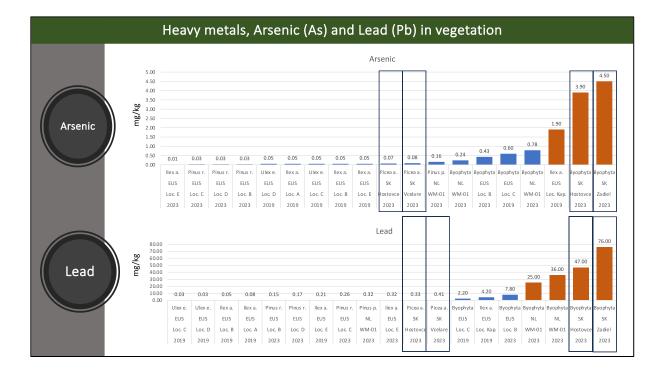
Annexe 6: Pine needles - Dioxins, PAH, and Heavy Metals

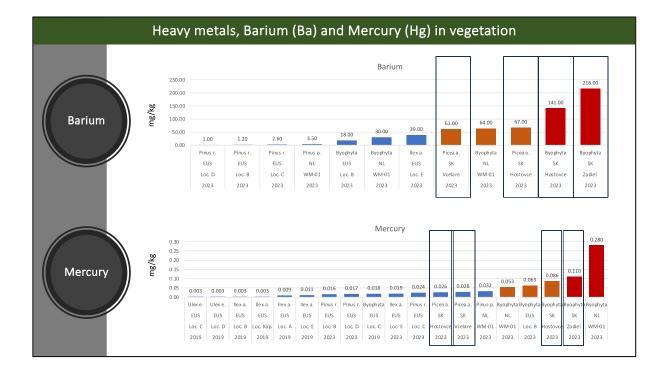
					Re+	R20+E2:R29+R20+	E2:R29+E2:R30+	E2:R32+E2:R30	+R20+E2:R29				
								Dioxins DR CAL	UX (mb)	medium bound (mb)	medium b	ound (mb)	
Date	Total	Samples	Location Village	Biomarker	r TW-RE-NR	Analyse	PCDD/F	dI-PCB	PCDD/F/dI-PCB	РАН	4 PAH	16 PAH	
Date	TOtal	Jampies	Cotation vinage	biomarker		Analyse	DR CALUX	DR CALUX	DR CALUX	PAH CALUX	GC-MS/MS	GC-MS/MS	Heavy Metals
						Method	1.7		3.3.				14
Sample	loc. / BioMat.				2023	Wiediou	DE	DR CALUX (dw BEQ (TCDD)/g fat (Benzo(a)pyrene equivalent ng BaP eq./g product	Σ4 PAH	Σ 16 PAH	14
	C. C. Marc	Vegetation Pine needles				-				in the city product			
30-10-2023	ı	Pine needles - Picea abies	Dvornìke - Loc. 1	A	23TWS-PN-Dv01	DR CALUX	0,22	0,56	0,77				
		Pine needles - Picea abies	Dvornìke - Loc. 1		23TWS-PN-Dv01	PAH CALUX				2,16			
		Pine needles - Picea abies	Dvornike - Loc. 1		23TWS-PN-Dv01	PAH GC-MS/MS					14,1	60,1	
30-10-2023		Pine needles - Picea abies	Včeláre - Loc. 2		23TWS-PN-Vc01	DR CALUX	1,29	1,56	2,85				
		Pine needles - Picea abies	Včeláre - Loc. 2		23TWS-PN-Vc01	PAH CALUX				0,79			
		Pine needles - Picea abies	Včeláre - Loc. 3 (near CK)		23TWS-PN-Vc02	Heavy Metals							14
31-10-2023	3	Pine needles - Picea abies	Zádiel - Loc. 1	₽	23TWS-PN-Za01	DR CALUX	0,61	0.92	1,52				
		Pine needles - Picea abies	Zádiel - Loc. 1		23TWS-PN-Za01	PAH CALUX				0,08			
31-10-2023	4	Pine needles - Picea abies	Hosťovce - Loc. 2 (sheep)	4	23TWS-PN-Hs02	DR CALUX	1,28	1,58	2,86				
		Pine needles - Picea abies	Hosťovce - Loc. 2 (sheep)		23TWS-PN-Hs02	PAH CALUX				0,56			
		Pine needles - Picea abies	Hosťovce - Loc. 2 (sheep)		23TWS-PN-Hs02	Heavy Metals							14
							TW Ind	icative scale Veg	etation / (Feed)	TW Indicative sc	ale Results	TW Indicative scale	TW Indicative s
								DR CALU	x	PAH CALUX	PAH GC-MS/MS	PAH GC-MS/MS	Heavy Meta
							PCDD/F	di-PCB	(PCDD/F/dI-PCB)	Benzo[a]pyrene equivalent	Σ4 ΡΑΗ	<u>Σ</u> 16 PAH	mos/veg
							Pg	TCDD eq./g dry v	weight (dw)				
							≥ 2.5		<u>≥</u> 3.32	> 500 ng	> 500 ng	> 500 ng	
							≥1.0		<u>≥</u> 1.66	> 250 ng	> 250 ng	> 250 ng	
							≥ 0.5	<u>≥</u> 0.5	≥ 0.83	≥ 100 ng	≥ 100 ng	≥ 100 ng	
							< 0.5	< 0.5	< 0.83	≥ 10 ng	≥ 10 ng	≥ 10 ng	
										< 10 ng	< 10 ng	< 10 ng	

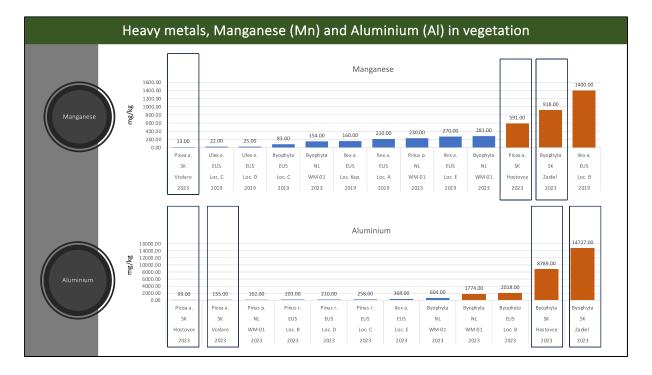
Annexe 7: Results Mosses

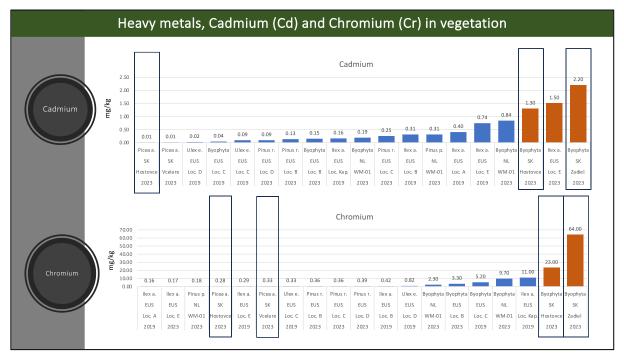
The indicative colour bars provided by ToxicoWatch serve as a reference scale. Mosses and pine needles are expressed in 88% dry weight and medium bound (MB).

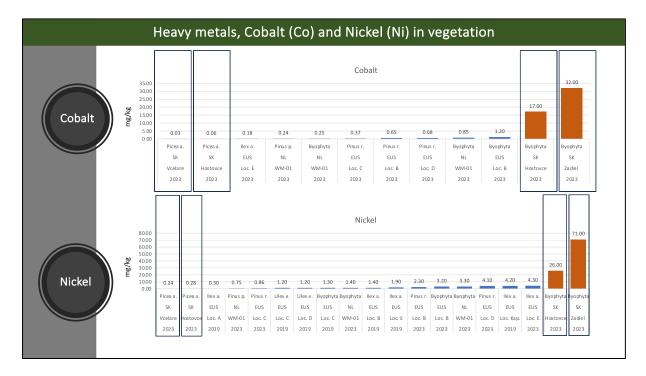


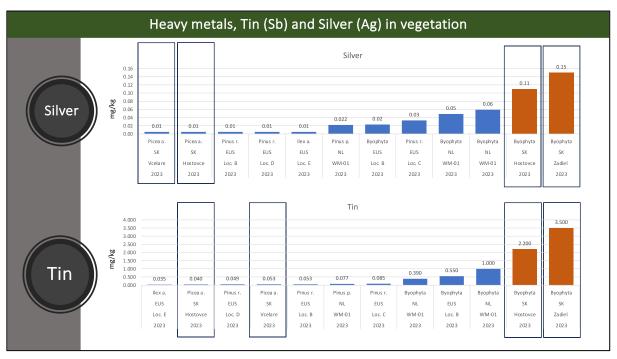

Annexe 8: Heavy metals


A high amount of Zinc is found in mosses in Zádiel. Maybe this is from zinc-coated (electroplated) gutters or roof-plates. Although Zinc is essential for life, too much Zinc ingestion can result in nausea, vomiting, and diarrhoea.




High levels of copper are found in the mosses of Hosťovce and Zádiel, resp. 26 and 22 mg/kg.





ToxicoWatch Biomonitoring, Slovakia – October 30/31, 2023

Biomonitoring research on persistent organic pollutants in the surrounding environment of the Cement plant Turňa nad Bodvou, Slovakia, 2023

Annexe lab results

Analysis report

Client: Toxicowatch

Abel Arkenbout info@toxicowatch.org grote ossenmarkt 18 8861 CP Harlingen Nederland BioDetection Systems Science Park 406 1098XH Amsterdam The Netherlands

Tel: +31 20 4350 750 E-mail: info@bds.nl Web: www.bds.nl

Authorized by: Emiel Felzel Head of Testing Laboratory

Date report (dd-mm-yyyy): 08-01-2024

Information about report

The results of examination refer exclusively to the checked samples.

Results are given in table 1.

Sample characteristics are given in table 2.

The measurement uncertainty for CALUX method is typically below 30%. For the calculation a coverage factor of 1 is used. If an analysis is accredited by ISO17025 (RvA L401) is indicated by a yes or a no Date of the performance of the test: 04-01-2024

Table 1 sample analysis results

Tabl	e 1 sample analysis results						
No.	Client code	Method	Parameter	Result	Conclusion	Cut off	Unit
1	23TWS-APU-DV01	DR CALUX	PCDD/PCDF (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
2	23TWS-APU-DV01	DR CALUX	dl-PCBs (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
3	23TWS-APU-DV01	PAH CALUX	Polycyclic aromatic hydrocarbons	0.67		n.a.	ng Benzo[a]pyrene eq./g w.w.
4	23TWS-APU-DV02	DR CALUX	PCDD/PCDF (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
5	23TWS-APU-DV02	DR CALUX	dl-PCBs (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
6	23TWS-APU-DV02	PAH CALUX	Polycyclic aromatic hydrocarbons	0.40		n.a.	ng Benzo[a]pyrene eq./g w.w.
7	23TWS-APU-VC03	DR CALUX	PCDD/PCDF (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
8	23TWS-APU-VC03	DR CALUX	dl-PCBs (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
9	23TWS-APU-VC03	PAH CALUX	Polycyclic aromatic hydrocarbons	0.32		n.a.	ng Benzo[a]pyrene eq./g w.w.
10	23TWS-APU-TNB01	DR CALUX	PCDD/PCDF (separated TEQ)	0.18		n.a.	pg TEQ / gram w.w.
11	23TWS-APU-TNB01	DR CALUX	dl-PCBs (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
12	23TWS-APU-TNB01	PAH CALUX	Polycyclic aromatic hydrocarbons	2.5		n.a.	ng Benzo[a]pyrene eq./g w.w.
13	23TWH-FRAPNC-WH-01-5	DR CALUX	PCDD/PCDF (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
14	23TWH-FRAPNC-WH-01-5	DR CALUX	dl-PCBs (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
15	23TWH-FRAPNC-WH-01-5	PAH CALUX	Polycyclic aromatic hydrocarbons	1.7		n.a.	ng Benzo[a]pyrene eq./g w.w.
16	23TWH-BKNC-WH01	DR CALUX	PCDD/PCDF (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
17	23TWH-BKNC-WH01	DR CALUX	dl-PCBs (separated TEQ)	<0.05		n.a.	pg TEQ / gram w.w.
18	23TWH-BKNC-WH01	PAH CALUX	Polycyclic aromatic hydrocarbons	3.1		n.a.	ng Benzo[a]pyrene eq./g w.w.
19	23TWS-MOS-DV01	DR CALUX	dl-PCBs (separated TEQ)	2.2		n.a.	pg TEQ / gram w.w.
20	23TWS-MOS-DV01	DR CALUX	PCDD/PCDF (separated TEQ)	7.4		n.a.	pg TEQ / gram w.w.
21	23TWS-MOS-DV01	PAH CALUX	Polycyclic aromatic hydrocarbons	150		n.a.	ng Benzo[a]pyrene eq./g w.w.
22	23TWS-MOS-DV03	DR CALUX	dl-PCBs (separated TEQ)	<0.2		n.a.	pg TEQ / gram w.w.
23	23TWS-MOS-DV03	DR CALUX	PCDD/PCDF (separated TEQ)	1.3		n.a.	pg TEQ / gram w.w.
24	23TWS-MOS-DV03	PAH CALUX	Polycyclic aromatic hydrocarbons	150		n.a.	ng Benzo[a]pyrene eq./g w.w.
25	23TWS-MOS-VC01	DR CALUX	dl-PCBs (separated TEQ)	0.77		n.a.	pg TEQ / gram w.w.
26	23TWS-MOS-VC01	DR CALUX	PCDD/PCDF (separated TEQ)	2.8		n.a.	pg TEQ / gram w.w.
27	23TWS-MOS-VC01	PAH CALUX	Polycyclic aromatic hydrocarbons	2600		n.a.	ng Benzo[a]pyrene eq./g w.w.
28	23TWS-MOS-ZA02	DR CALUX	dl-PCBs (separated TEQ)	<0.1		n.a.	pg TEQ / gram w.w.
29	23TWS-MOS-ZA02	DR CALUX	PCDD/PCDF (separated TEQ)	6.0		n.a.	pg TEQ / gram w.w.
30	23TWS-MOS-ZA02	PAH CALUX	Polycyclic aromatic hydrocarbons	570		n.a.	ng Benzo[a]pyrene eq./g w.w.
31	23TWS-MOS-HS02	DR CALUX	dl-PCBs (separated TEQ)	1.9		n.a.	pg TEQ / gram w.w.
32	23TWS-MOS-HS02	DR CALUX	PCDD/PCDF (separated TEQ)	6.0		n.a.	pg TEQ / gram w.w.
33	23TWS-MOS-HS02	PAH CALUX	Polycyclic aromatic hydrocarbons	180		n.a.	ng Benzo[a]pyrene eq./g w.w.
34	23TWS-PN-DV01	DR CALUX	dl-PCBs (separated TEQ)	0.44		n.a.	pg TEQ / gram w.w.
35	23TWS-PN-DV01	DR CALUX	PCDD/PCDF (separated TEQ)	0.17		n.a.	pg TEQ / gram w.w.
36	23TWS-PN-DV01	PAH CALUX	Polycyclic aromatic hydrocarbons	1.7		n.a.	ng Benzo[a]pyrene eq./g w.w.

37	23TWS-PN-VC02	DR CALUX	dl-PCBs (separated TEQ)	0.91		n.a.	pg TEQ / gram w.w.
38	23TWS-PN-VC02	DR CALUX	PCDD/PCDF (separated TEQ)	0.75		n.a.	pg TEQ / gram w.w.
39	23TWS-PN-VC02	PAH CALUX	Polycyclic aromatic hydrocarbons	0.46		n.a.	ng Benzo[a]pyrene eq./g w.w.
40	23TWS-PN-ZA01	DR CALUX	dl-PCBs (separated TEQ)	0.56		n.a.	pg TEQ / gram w.w.
41	23TWS-PN-ZA01	DR CALUX	PCDD/PCDF (separated TEQ)	0.37		n.a.	pg TEQ / gram w.w.
42	23TWS-PN-ZA01	PAH CALUX	Polycyclic aromatic hydrocarbons	<0.10		n.a.	ng Benzo[a]pyrene eq./g w.w.
43	23TWS-PN-HS02	DR CALUX	dl-PCBs (separated TEQ)	0.88		n.a.	pg TEQ / gram w.w.
44	23TWS-PN-HS02	DR CALUX	PCDD/PCDF (separated TEQ)	0.71		n.a.	pg TEQ / gram w.w.
45	23TWS-PN-HS02	PAH CALUX	Polycyclic aromatic hydrocarbons	0.31		n.a.	ng Benzo[a]pyrene eq./g w.w.
46	23TWS-EGG-DV-02	DR CALUX	PCDD/PCDF and dl-PCBs (BEQ; semi)	1.2	compliant	3.3	pg BEQ / gram fat
47	23TWS-EGG-DV-02	DR CALUX	PCDD/PCDF (BEQ; semi)	1.0	compliant	1.7	pg BEQ / gram fat
48	23TWS-EGG-VC-01	DR CALUX	PCDD/PCDF and dl-PCBs (BEQ; semi)	1.7	compliant	3.3	pg BEQ / gram fat
49	23TWS-EGG-VC-01	DR CALUX	PCDD/PCDF (BEQ; semi)	1.6	compliant	1.7	pg BEQ / gram fat
50	23TWS-EGG-ZA-01	DR CALUX	PCDD/PCDF and dl-PCBs (BEQ; semi)	1.7	compliant	3.3	pg BEQ / gram fat
51	23TWS-EGG-ZA-01	DR CALUX	PCDD/PCDF (BEQ; semi)	0.65	compliant	1.7	pg BEQ / gram fat
52	23TWS-RD-DV01	DR CALUX	dl-PCBs (separated TEQ)	1.2		n.a.	pg TEQ / gram dry weight
53	23TWS-RD-DV01	DR CALUX	PCDD/PCDF (separated TEQ)	5.1		n.a.	pg TEQ / gram dry weight
54	23TWS-RD-DV01	PAH CALUX	Polycyclic aromatic hydrocarbons	45000		n.a.	ng Benzo[a]pyrene eq./g dry weight
55	23TWS-RD-ZA-02	DR CALUX	PCDD/PCDF (separated TEQ)	3.3		n.a.	pg TEQ / gram dry weight
56	23TWS-RD-ZA-02	DR CALUX	dl-PCBs (separated TEQ)	2.2		n.a.	pg TEQ / gram dry weight
57	23TWS-RD-ZA-02	PAH CALUX	Polycyclic aromatic hydrocarbons	34000		n.a.	ng Benzo[a]pyrene eq./g dry weight
58	23TWS-H20-CK-01	FITC-T4	Thyroid disruption	21		n.a.	ug PFOA eq./I
59	23TWS-SED-CK-01	FITC-T4	Thyroid disruption	1.3		n.a.	ug PFOA eq./gram dry sample
60	23TWS-EGG-ZA-02	DR CALUX	PCDD/PCDF and dl-PCBs (BEQ; semi)	9.8	suspected	3.3	pg BEQ / gram fat
61	23TWS-EGG-ZA-02	DR CALUX	PCDD/PCDF (BEQ; semi)	3.1	suspected	1.7	pg BEQ / gram fat
62	23TWS-EGG-TNB-01	DR CALUX	PCDD/PCDF and dl-PCBs (BEQ; semi)	4.8	suspected	3.3	pg BEQ / gram fat
63	23TWS-EGG-TNB-01	DR CALUX	PCDD/PCDF (BEQ; semi)	2.7	suspected	1.7	pg BEQ / gram fat
64	23TWS-EGG-HS-01	DR CALUX	PCDD/PCDF and dl-PCBs (BEQ; semi)	4.7	suspected	3.3	pg BEQ / gram fat
65	23TWS-EGG-HS-01	DR CALUX	PCDD/PCDF (BEQ; semi)	2.2	suspected	1.7	pg BEQ / gram fat
Fo	r the suspected sample(s) to be non-compliant,	the concentr	ation has to be determined by a	a confirm	atory meth	od	

For the suspected sample(s) to be non-compliant, the concentration has to be determined by a confirmatory method

Results given behind the less than sign are the limit of quantification.

n.a.= no cut off according to EU guideline in BEQ established, maximal levels applicable if available

Table 2 sample characteristics

No	. Client code	BDS code	Matrix	ISO17025 (RvAL401)	Date arrival	Sealed
1	23TWS-APU-DV01	47320	Not defined	no	28-11-2023	
2	23TWS-APU-DV01	47320	Not defined	no	28-11-2023	
3	23TWS-APU-DV01	47320	Not defined	no	28-11-2023	
4	23TWS-APU-DV02	47321	Not defined	no	28-11-2023	
5	23TWS-APU-DV02	47321	Not defined	no	28-11-2023	
6	23TWS-APU-DV02	47321	Not defined	no	28-11-2023	
7	23TWS-APU-VC03	47322	Not defined	no	28-11-2023	
8	23TWS-APU-VC03	47322	Not defined	no	28-11-2023	
9	23TWS-APU-VC03	47322	Not defined	no	28-11-2023	
10	23TWS-APU-TNB01	47323	Not defined	no	28-11-2023	
11	23TWS-APU-TNB01	47323	Not defined	no	28-11-2023	
12	23TWS-APU-TNB01	47323	Not defined	no	28-11-2023	
13	23TWH-FRAPNC-WH-01-5	47324	Not defined	no	28-11-2023	
14	23TWH-FRAPNC-WH-01-5	47324	Not defined	no	28-11-2023	
15	23TWH-FRAPNC-WH-01-5	47324	Not defined	no	28-11-2023	
16	23TWH-BKNC-WH01	47325	Not defined	no	28-11-2023	
17	23TWH-BKNC-WH01	47325	Not defined	no	28-11-2023	
18	23TWH-BKNC-WH01	47325	Not defined	no	28-11-2023	
19	23TWS-MOS-DV01	47326	Not defined	no	28-11-2023	
20	23TWS-MOS-DV01	47326	Not defined	no	28-11-2023	
21	23TWS-MOS-DV01	47326	Not defined	no	28-11-2023	
22	23TWS-MOS-DV03	47327	Not defined	no	28-11-2023	
23	23TWS-MOS-DV03	47327	Not defined	no	28-11-2023	
24	23TWS-MOS-DV03	47327	Not defined	no	28-11-2023	
25	23TWS-MOS-VC01	47328	Not defined	no	28-11-2023	
26	23TWS-MOS-VC01	47328	Not defined	no	28-11-2023	
27	23TWS-MOS-VC01	47328	Not defined	no	28-11-2023	
28	23TWS-MOS-ZA02	47329	Not defined	no	28-11-2023	
29	23TWS-MOS-ZA02	47329	Not defined	no	28-11-2023	
30	23TWS-MOS-ZA02	47329	Not defined	no	28-11-2023	
31	23TWS-MOS-HS02	47330	Not defined	no	28-11-2023	

32	23TWS-MOS-HS02	47330	Not defined	no	28-11-2023	
33	23TWS-MOS-HS02	47330	Not defined	no	28-11-2023	
34	23TWS-PN-DV01	47331	Not defined	no	28-11-2023	
35	23TWS-PN-DV01	47331	Not defined	no	28-11-2023	
36	23TWS-PN-DV01	47331	Not defined	no	28-11-2023	
37	23TWS-PN-VC02	47332	Not defined	no	28-11-2023	
38	23TWS-PN-VC02	47332	Not defined	no	28-11-2023	
39	23TWS-PN-VC02	47332	Not defined	no	28-11-2023	
40	23TWS-PN-ZA01	47333	Not defined	no	28-11-2023	
41	23TWS-PN-ZA01	47333	Not defined	no	28-11-2023	
42	23TWS-PN-ZA01	47333	Not defined	no	28-11-2023	
43	23TWS-PN-HS02	47334	Not defined	no	28-11-2023	
44	23TWS-PN-HS02	47334	Not defined	no	28-11-2023	
45	23TWS-PN-HS02	47334	Not defined	no	28-11-2023	
46	23TWS-EGG-DV-02	47335	Food, egg(product)	yes	28-11-2023	
47	23TWS-EGG-DV-02	47335	Food, egg(product)	yes	28-11-2023	
48	23TWS-EGG-VC-01	47336	Food, egg(product)	yes	28-11-2023	
49	23TWS-EGG-VC-01	47336	Food, egg(product)	yes	28-11-2023	
50	23TWS-EGG-ZA-01	47337	Food, egg(product)	yes	28-11-2023	
51	23TWS-EGG-ZA-01	47337	Food, egg(product)	yes	28-11-2023	
52	23TWS-RD-DV01	47341	Dust	no	28-11-2023	
53	23TWS-RD-DV01	47341	Dust	no	28-11-2023	
54	23TWS-RD-DV01	47341	Dust	no	28-11-2023	
55	23TWS-RD-ZA-02	47342	Dust	no	28-11-2023	
56	23TWS-RD-ZA-02	47342	Dust	no	28-11-2023	
57	23TWS-RD-ZA-02	47342	Dust	no	28-11-2023	
58	23TWS-H20-CK-01	47343	Water	no	28-11-2023	
59	23TWS-SED-CK-01	47344	Sediment	no	28-11-2023	
60	23TWS-EGG-ZA-02	47562	Food, egg(product)	yes	28-11-2023	no
61	23TWS-EGG-ZA-02	47562	Food, egg(product)	yes	28-11-2023	no
62	23TWS-EGG-TNB-01	47563	Food, egg(product)	yes	28-11-2023	no
63	23TWS-EGG-TNB-01	47563	Food, egg(product)	yes	28-11-2023	no
64	23TWS-EGG-HS-01	47564	Food, egg(product)	yes	28-11-2023	no
65	23TWS-EGG-HS-01	47564	Food, egg(product)	yes	28-11-2023	no
_						

For the method DR CALUX and the sum parameter PCDD/PCDF (separated TEQ) the used method is extraction with organic solvents; the extracts are cleaned on an acid silica column and separation is done with a florisil column. The cleaned extracts are dissolved in DMSO. The DR CALUX activity is determined (24h exposure) and benchmarked against 2,3,7,8-TCDD. The DR CALUX analysis is done according to p-bds-051

For the method DR CALUX and the sum parameter dI-PCBs (separated TEQ) the used method is extraction with organic solvents; the extracts are cleaned on an acid silica column and separation is done with a florisil column. The cleaned extracts are dissolved in DMSO. The DR CALUX activity is determined (24h exposure) and benchmarked against 2,3,7,8-TCDD. The DR CALUX analysis is done according to p-bds-051.

For the method PAH CALUX and the sum parameter Polycyclic aromatic hydrocarbons the used method is Extracts are dissolved in DMSO. The PAH CALUX activity is determined (4h exposure) and benchmarked against Benzo[a]pyrene.

For the method DR CALUX and the sum parameter PCDD/PCDF (BEQ; semi) the used method is shake extraction with organic solvents (hexane); the extracts are cleaned on an acid silica column. The cleaned extracts are dissolved in DMSO. The DR CALUX activity is determined (24h exposure). The response of the sample is corrected for the background and subsequently corrected for the apparent bioassay recovery with a reference sample at the level of interest. The evaluation was done on the maximum level for PCDD/F, from which a cut off value has been established (2/3 of maximum level) to determine if a sample is compliant or suspected. As a maximum level the level of the matrix as described in the table above is used. After the evaluation an estimation is given of the sample in the form of a BEQ outcome. The DR CALUX analysis is done according to p-bds-051.

For the method DR CALUX and the sum parameter PCDD/PCDF and dI-PCBs (BEQ; semi) the used method is shake extraction with organic solvents (hexane); the extracts are cleaned on an acid silica column. The cleaned extracts are dissolved in DMSO. The DR CALUX activity is determined (24h exposure). The response of the sample is corrected for the background and subsequently corrected for the apparent bioassay recovery with a reference sample at the level of interest. The evaluation was done on the maximum level for PCDD/F and dI-PCBs, from which a cut off value has been established (2/3 of maximum level) to determine if a sample is compliant or suspected. As a maximum level the level of the matrix as described in the table above is used. After the evaluation an estimation is given of the sample in the form of a BEQ outcome. The DR CALUX analysis is done according to p-bds-051.

All DR CALUX analysis results comply with EU requirements as indicated in Commission Regulation (EU) 2017/644 of 5 April 2017 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs. Maximal levels according to Commission Regulation (EC) No 1881/2006.

Client: Toxicowatch Abel Arkenbout info@toxicowatch.org

8861 CP Harlingen Nederland

Information about report

The results of examination refer exclusively to the checked samples.

All analysis results comply with EU requirements as indicated in Commission Regulation (EU) 2017/644 of 5 April 2017 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs. Maximal levels according to Commission Regulation (EC) No 1881/2006.

For the analyses on dioxins/furans/dl-PCBs/ndl-PCB the sample is extracted with organic solvents (hexane); the extracts are cleaned on an acid silica column/alumina/florisil/carbon. For recovery calculation all 13C labeled congeners are added. The concentrations are determined by GC-MS/MS.

BDS sample number	47338
Client identification	23TWS-EGG-ZA-02
Sample recieved on	28-11-2023
Start of test	30-11-2023
End of test	11-12-2023
Matrix	Food, egg(product)
Judgement	

Non-compliant for maximal level limit (expressed as WHO PCDD/F + dl-PCBs TEQ) taking into account expanded measurement uncertainity. Sample 23TWS-EGG-ZA-02 is above the maximal level of 5.0 pg TEQ / gram fat.

Test results:

WHO sum pa	rameters (acc	redited under	RvA L401)

WHO PCDD/F TEQ lowerbound 2005	2	pg TEQ / gram fat	U+/-	24%
WHO PCDD/F TEQ mediumbound 2005	2.2	pg TEQ / gram fat	U+/-	24%
WHO PCDD/F TEQ upperbound 2005	2.3	pg TEQ / gram fat	U+/-	24%
WHO dI-PCBs TEQ lowerbound 2005	6.6	pg TEQ / gram fat	U+/-	24%
WHO dI-PCBs TEQ mediumbound 2005	6.6	pg TEQ / gram fat	U+/-	24%
WHO dl-PCBs TEQ upperbound 2005	6.6	pg TEQ / gram fat	U+/-	24%
WHO PCDD/F/dl-PCBs TEQ lowerbound 2005	8.7	pg TEQ / gram fat	U+/-	23%
WHO PCDD/F/dl-PCBs TEQ mediumbound 2005	8.8	pg TEQ / gram fat	U+/-	23%
WHO PCDD/F/dl-PCBs TEQ upperbound 2005	8.9	pg TEQ / gram fat	U+/-	23%
Dioxins/furans (accredited under RvA L401)				
2,3,7,8-Tetrachlorodibenzo-p-dioxin	<0.2	pg / gram fat	U+/-	44%
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.27	pg / gram fat	U+/-	31%
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.44	pg / gram fat	U+/-	44%
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.54	pg / gram fat	U+/-	46%
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.19	pg / gram fat	U+/-	41%
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	1.1	pg / gram fat	U+/-	34%
Octachlorodibenzo-p-dioxin	2.8	pg / gram fat	U+/-	49%
2,3,7,8-Tetrachlorodibenzofuran	2.6	pg / gram fat	U+/-	27%
1,2,3,7,8-Pentachlorodibenzofuran	2.0	pg / gram fat	U+/-	31%
2,3,4,7,8-Pentachlorodibenzofuran	3.1	pg / gram fat	U+/-	29%
1,2,3,4,7,8-Hexachlorodibenzofuran	2.3	pg / gram fat	U+/-	37%
1,2,3,6,7,8-Hexachlorodibenzofuran	0.81	pg / gram fat	U+/-	25%

BioDetection Systems Science Park 406 1098XH Amsterdam The Netherlands

Tel: +31 20 4350 750 E-mail: info@bds.nl Web: www.bds.nl

Authorized by: Date report (dd-mm-yyyy): Emiel Felzel 08-01-2024 Head of Testing Laboratory

1,2,3,7,8,9-Hexachlorodibenzofuran	<0.2	pg / gram fat	U+/-	41%
2,3,4,6,7,8-Hexachlorodibenzofuran	0.84	pg / gram fat	U+/-	32%
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.78	pg / gram fat	U+/-	25%
1,2,3,4,7,8,9-Heptachlorodibenzofuran	<0.2	pg / gram fat	U+/-	28%
Octachlorodibenzofuran	<0.2	pg / gram fat	U+/-	37%

dl-PCBs (accredited under RvA L401)

3,3',4,4'-Tetrachlorobiphenyl (#77)	38	pg / gram fat	U+/-	39%
3,4,4',5-Tetrachlorobiphenyl (#81)	4.5	pg / gram fat	U+/-	32%
3,3',4,4',5-Pentachlorobiphenyl (#126)	57	pg / gram fat	U+/-	26%
3,3',4,4',5,5'-Hexachlorobiphenyl (#169)	5.6	pg / gram fat	U+/-	53%
2,3,3',4,4'-Pentachlorobiphenyl (#105)	2300	pg / gram fat	U+/-	51%
2,3,4,4',5-Pentachlorobiphenyl (#114)	70	pg / gram fat	U+/-	32%
2,3',4,4',5-Pentachlorobiphenyl (#118)	12000	pg / gram fat	U+/-	44%
2,3',4,4',5'-Pentachlorobiphenyl (#123)	210	pg / gram fat	U+/-	36%
2,3,3',4,4',5-Hexachlorobiphenyl (#156)	5100	pg / gram fat	U+/-	36%
2,3,3',4,4',5'-Hexachlorobiphenyl (#157)	640	pg / gram fat	U+/-	37%
2,3',4,4',5,5'-Hexachlorobiphenyl (#167)	2300	pg / gram fat	U+/-	35%
2,3,3',4,4',5,5'-Heptachlorobiphenyl (#189)	780	pg / gram fat	U+/-	37%

Results given behind the less than sign are the limit of quantification.

Recovery Dioxins/furans

······································	
2,3,7,8-Tetrachlorodibenzo-p-dioxin	85.2%
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	93.4%
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	97%
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	91.8%
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	79.8%
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	96.1%
Octachlorodibenzo-p-dioxin	129.8%
2,3,7,8-Tetrachlorodibenzofuran	88.5%
1,2,3,7,8-Pentachlorodibenzofuran	71.2%
2,3,4,7,8-Pentachlorodibenzofuran	67%
1,2,3,4,7,8-Hexachlorodibenzofuran	78.7%
1,2,3,6,7,8-Hexachlorodibenzofuran	82%
1,2,3,7,8,9-Hexachlorodibenzofuran	157.7%
2,3,4,6,7,8-Hexachlorodibenzofuran	66.3%
1,2,3,4,6,7,8-Heptachlorodibenzofuran	97.8%
1,2,3,4,7,8,9-Heptachlorodibenzofuran	93.2%
Octachlorodibenzofuran	105.3%

Recovery dl-PCBs

3,3',4,4'-Tetrachlorobiphenyl (#77)	76.7%
3,4,4',5-Tetrachlorobiphenyl (#81)	83.2%
3,3',4,4',5-Pentachlorobiphenyl (#126)	83.4%
3,3',4,4',5,5'-Hexachlorobiphenyl (#169)	151.8%
2,3,3',4,4'-Pentachlorobiphenyl (#105)	78.2%
2,3,4,4',5-Pentachlorobiphenyl (#114)	82.2%
2,3',4,4',5-Pentachlorobiphenyl (#118)	74.4%
2,3',4,4',5'-Pentachlorobiphenyl (#123)	80%
2,3,3',4,4',5-Hexachlorobiphenyl (#156)	98%
2,3,3',4,4',5'-Hexachlorobiphenyl (#157)	88.9%
2,3',4,4',5,5'-Hexachlorobiphenyl (#167)	77.3%
2,3,3',4,4',5,5'-Heptachlorobiphenyl (#189)	108.6%

Client: Toxicowatch Abel Arkenbout info@toxicowatch.org

8861 CP Harlingen Nederland

Information about report

The results of examination refer exclusively to the checked samples.

All analysis results comply with EU requirements as indicated in Commission Regulation (EU) 2017/644 of 5 April 2017 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs. Maximal levels according to Commission Regulation (EC) No 1881/2006.

For the analyses on dioxins/furans/dl-PCBs/ndl-PCB the sample is extracted with organic solvents (hexane); the extracts are cleaned on an acid silica column/alumina/florisil/carbon. For recovery calculation all 13C labeled congeners are added. The concentrations are determined by GC-MS/MS.

Information about sample

BDS sample number	47339
Client identification	23TWS-EGG-TNB-01
Sample recieved on	28-11-2023
Start of test	30-11-2023
End of test	12-12-2023
Matrix	Food, egg(product)

Test results:

WHO sum parameters (accredited under RvA L401)					
WHO PCDD/F TEQ lowerbound 2005	1.2	pg TEQ / gram fat	U+/-	24%	
WHO PCDD/F TEQ mediumbound 2005	1.3	pg TEQ / gram fat	U+/-	24%	
WHO PCDD/F TEQ upperbound 2005	1.5	pg TEQ / gram fat	U+/-	24%	
WHO dI-PCBs TEQ lowerbound 2005	1.1	pg TEQ / gram fat	U+/-	24%	
WHO dI-PCBs TEQ mediumbound 2005	1.1	pg TEQ / gram fat	U+/-	24%	
WHO dI-PCBs TEQ upperbound 2005	1.1	pg TEQ / gram fat	U+/-	24%	
WHO PCDD/F/dl-PCBs TEQ lowerbound 2005	2.4	pg TEQ / gram fat	U+/-	23%	
WHO PCDD/F/dI-PCBs TEQ mediumbound 2005	2.5	pg TEQ / gram fat	U+/-	23%	
WHO PCDD/F/dl-PCBs TEQ upperbound 2005	2.6	pg TEQ / gram fat	U+/-	23%	

Dioxins/furans (accredited under RvA L401)				
2,3,7,8-Tetrachlorodibenzo-p-dioxin	<0.2	pg / gram fat	U+/-	44%
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.43	pg / gram fat	U+/-	31%
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.21	pg / gram fat	U+/-	44%
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.66	pg / gram fat	U+/-	46%
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	<0.2	pg / gram fat	U+/-	41%
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	1.3	pg / gram fat	U+/-	34%
Octachlorodibenzo-p-dioxin	5.0	pg / gram fat	U+/-	49%
2,3,7,8-Tetrachlorodibenzofuran	1.3	pg / gram fat	U+/-	27%
1,2,3,7,8-Pentachlorodibenzofuran	1.3	pg / gram fat	U+/-	31%
2,3,4,7,8-Pentachlorodibenzofuran	1.0	pg / gram fat	U+/-	29%
1,2,3,4,7,8-Hexachlorodibenzofuran	0.84	pg / gram fat	U+/-	37%
1,2,3,6,7,8-Hexachlorodibenzofuran	0.50	pg / gram fat	U+/-	25%
1,2,3,7,8,9-Hexachlorodibenzofuran	<0.2	pg / gram fat	U+/-	41%
2,3,4,6,7,8-Hexachlorodibenzofuran	0.64	pg / gram fat	U+/-	32%
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.4	pg / gram fat	U+/-	25%
1,2,3,4,7,8,9-Heptachlorodibenzofuran	<0.2	pg / gram fat	U+/-	28%

Science Park 406 1098XH Amsterdam The Netherlands

BioDetection Systems

Tel: +31 20 4350 750 E-mail: info@bds.nl Web: www.bds.nl

Octachlorodibenzofuran	0.43	ng / grom fot	U+/-	37%
Octachiorodibenzoruran	0.43	pg / gram fat	0+/-	31%
dl-PCBs (accredited under RvA L401)				
3,3',4,4'-Tetrachlorobiphenyl (#77)	18	pg / gram fat	U+/-	39%
3,4,4',5-Tetrachlorobiphenyl (#81)	2.4	pg / gram fat	U+/-	32%
3,3',4,4',5-Pentachlorobiphenyl (#126)	10	pg / gram fat	U+/-	26%
3,3',4,4',5,5'-Hexachlorobiphenyl (#169)	2.2	pg / gram fat	U+/-	53%
2,3,3',4,4'-Pentachlorobiphenyl (#105)	110	pg / gram fat	U+/-	51%
2,3,4,4',5-Pentachlorobiphenyl (#114)	<9	pg / gram fat	U+/-	32%
2,3',4,4',5-Pentachlorobiphenyl (#118)	300	pg / gram fat	U+/-	44%
2,3',4,4',5'-Pentachlorobiphenyl (#123)	<9	pg / gram fat	U+/-	36%
2,3,3',4,4',5-Hexachlorobiphenyl (#156)	130	pg / gram fat	U+/-	36%
2,3,3',4,4',5'-Hexachlorobiphenyl (#157)	16	pg / gram fat	U+/-	37%
2,3',4,4',5,5'-Hexachlorobiphenyl (#167)	71	pg / gram fat	U+/-	35%
2,3,3',4,4',5,5'-Heptachlorobiphenyl (#189)	35	pg / gram fat	U+/-	37%

Results given behind the less than sign are the limit of quantification.

Client: Toxicowatch Abel Arkenbout info@toxicowatch.org

8861 CP Harlingen Nederland

Information about report

The results of examination refer exclusively to the checked samples.

All analysis results comply with EU requirements as indicated in Commission Regulation (EU) 2017/644 of 5 April 2017 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs. Maximal levels according to Commission Regulation (EC) No 1881/2006.

For the analyses on dioxins/furans/dl-PCBs/ndl-PCB the sample is extracted with organic solvents (hexane); the extracts are cleaned on an acid silica column/alumina/florisil/carbon. For recovery calculation all 13C labeled congeners are added. The concentrations are determined by GC-MS/MS.

Information about sample

BDS sample number	47339
Client identification	23TWS-EGG-TNB-01
Sample recieved on	28-11-2023
Start of test	30-11-2023
End of test	12-12-2023
Matrix	Food, egg(product)

Test results:

WHO sum parameters (accredited under RvA L401)					
WHO PCDD/F TEQ lowerbound 2005	1.2	pg TEQ / gram fat	U+/-	24%	
WHO PCDD/F TEQ mediumbound 2005	1.3	pg TEQ / gram fat	U+/-	24%	
WHO PCDD/F TEQ upperbound 2005	1.5	pg TEQ / gram fat	U+/-	24%	
WHO dI-PCBs TEQ lowerbound 2005	1.1	pg TEQ / gram fat	U+/-	24%	
WHO dI-PCBs TEQ mediumbound 2005	1.1	pg TEQ / gram fat	U+/-	24%	
WHO dI-PCBs TEQ upperbound 2005	1.1	pg TEQ / gram fat	U+/-	24%	
WHO PCDD/F/dl-PCBs TEQ lowerbound 2005	2.4	pg TEQ / gram fat	U+/-	23%	
WHO PCDD/F/dI-PCBs TEQ mediumbound 2005	2.5	pg TEQ / gram fat	U+/-	23%	
WHO PCDD/F/dl-PCBs TEQ upperbound 2005	2.6	pg TEQ / gram fat	U+/-	23%	

Dioxins/furans (accredited under RvA L401)				
2,3,7,8-Tetrachlorodibenzo-p-dioxin	<0.2	pg / gram fat	U+/-	44%
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.43	pg / gram fat	U+/-	31%
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.21	pg / gram fat	U+/-	44%
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.66	pg / gram fat	U+/-	46%
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	<0.2	pg / gram fat	U+/-	41%
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	1.3	pg / gram fat	U+/-	34%
Octachlorodibenzo-p-dioxin	5.0	pg / gram fat	U+/-	49%
2,3,7,8-Tetrachlorodibenzofuran	1.3	pg / gram fat	U+/-	27%
1,2,3,7,8-Pentachlorodibenzofuran	1.3	pg / gram fat	U+/-	31%
2,3,4,7,8-Pentachlorodibenzofuran	1.0	pg / gram fat	U+/-	29%
1,2,3,4,7,8-Hexachlorodibenzofuran	0.84	pg / gram fat	U+/-	37%
1,2,3,6,7,8-Hexachlorodibenzofuran	0.50	pg / gram fat	U+/-	25%
1,2,3,7,8,9-Hexachlorodibenzofuran	<0.2	pg / gram fat	U+/-	41%
2,3,4,6,7,8-Hexachlorodibenzofuran	0.64	pg / gram fat	U+/-	32%
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.4	pg / gram fat	U+/-	25%
1,2,3,4,7,8,9-Heptachlorodibenzofuran	<0.2	pg / gram fat	U+/-	28%

Science Park 406 1098XH Amsterdam The Netherlands

BioDetection Systems

Tel: +31 20 4350 750 E-mail: info@bds.nl Web: www.bds.nl

Octachlorodibenzofuran	0.43	ng / grom fot	U+/-	37%
Octachiorodibenzoruran	0.43	pg / gram fat	0+/-	31%
dl-PCBs (accredited under RvA L401)				
3,3',4,4'-Tetrachlorobiphenyl (#77)	18	pg / gram fat	U+/-	39%
3,4,4',5-Tetrachlorobiphenyl (#81)	2.4	pg / gram fat	U+/-	32%
3,3',4,4',5-Pentachlorobiphenyl (#126)	10	pg / gram fat	U+/-	26%
3,3',4,4',5,5'-Hexachlorobiphenyl (#169)	2.2	pg / gram fat	U+/-	53%
2,3,3',4,4'-Pentachlorobiphenyl (#105)	110	pg / gram fat	U+/-	51%
2,3,4,4',5-Pentachlorobiphenyl (#114)	<9	pg / gram fat	U+/-	32%
2,3',4,4',5-Pentachlorobiphenyl (#118)	300	pg / gram fat	U+/-	44%
2,3',4,4',5'-Pentachlorobiphenyl (#123)	<9	pg / gram fat	U+/-	36%
2,3,3',4,4',5-Hexachlorobiphenyl (#156)	130	pg / gram fat	U+/-	36%
2,3,3',4,4',5'-Hexachlorobiphenyl (#157)	16	pg / gram fat	U+/-	37%
2,3',4,4',5,5'-Hexachlorobiphenyl (#167)	71	pg / gram fat	U+/-	35%
2,3,3',4,4',5,5'-Heptachlorobiphenyl (#189)	35	pg / gram fat	U+/-	37%

Results given behind the less than sign are the limit of quantification.

Client: Toxicowatch Abel Arkenbout info@toxicowatch.org

8861 CP Harlingen Nederland

Information about report

The results of examination refer exclusively to the checked samples.

All analysis results comply with EU requirements as indicated in Commission Regulation (EU) 2017/644 of 5 April 2017 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs. Maximal levels according to Commission Regulation (EC) No 1881/2006.

For the analyses on dioxins/furans/dl-PCBs/ndl-PCB the sample is extracted with organic solvents (hexane); the extracts are cleaned on an acid silica column/alumina/florisil/carbon. For recovery calculation all 13C labeled congeners are added. The concentrations are determined by GC-MS/MS.

Information about sample

BDS sample number	47340
Client identification	23TWS-EGG-HS-01
Sample recieved on	28-11-2023
Start of test	30-11-2023
End of test	12-12-2023
Matrix	Food, egg(product)

Test results:

WHO sum parameters (accredited under RvA L401)

WHO PCDD/F TEQ lowerbound 2005	0.95	pg TEQ / gram fat	U+/-	24%
WHO PCDD/F TEQ mediumbound 2005	1.1	pg TEQ / gram fat	U+/-	24%
WHO PCDD/F TEQ upperbound 2005	1.2	pg TEQ / gram fat	U+/-	24%
WHO dI-PCBs TEQ lowerbound 2005	3.9	pg TEQ / gram fat	U+/-	24%
WHO dI-PCBs TEQ mediumbound 2005	3.9	pg TEQ / gram fat	U+/-	24%
WHO dI-PCBs TEQ upperbound 2005	3.9	pg TEQ / gram fat	U+/-	24%
WHO PCDD/F/dI-PCBs TEQ lowerbound 2005	4.8	pg TEQ / gram fat	U+/-	23%
WHO PCDD/F/dI-PCBs TEQ mediumbound 2005	4.9	pg TEQ / gram fat	U+/-	23%
WHO PCDD/F/dl-PCBs TEQ upperbound 2005	5.1	pg TEQ / gram fat	U+/-	23%

Dioxins/furans (accredited under RvA L401)				
2,3,7,8-Tetrachlorodibenzo-p-dioxin	<0.2	pg / gram fat	U+/-	44%
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.18	pg / gram fat	U+/-	31%
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	<0.2	pg / gram fat	U+/-	44%
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.41	pg / gram fat	U+/-	46%
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	<0.2	pg / gram fat	U+/-	41%
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.74	pg / gram fat	U+/-	34%
Octachlorodibenzo-p-dioxin	2.8	pg / gram fat	U+/-	49%
2,3,7,8-Tetrachlorodibenzofuran	1.5	pg / gram fat	U+/-	27%
1,2,3,7,8-Pentachlorodibenzofuran	1.1	pg / gram fat	U+/-	31%
2,3,4,7,8-Pentachlorodibenzofuran	1.3	pg / gram fat	U+/-	29%
1,2,3,4,7,8-Hexachlorodibenzofuran	0.58	pg / gram fat	U+/-	37%
1,2,3,6,7,8-Hexachlorodibenzofuran	0.58	pg / gram fat	U+/-	25%
1,2,3,7,8,9-Hexachlorodibenzofuran	<0.2	pg / gram fat	U+/-	41%
2,3,4,6,7,8-Hexachlorodibenzofuran	0.36	pg / gram fat	U+/-	32%
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.47	pg / gram fat	U+/-	25%
1,2,3,4,7,8,9-Heptachlorodibenzofuran	<0.2	pg / gram fat	U+/-	28%

BioDetection Systems Science Park 406 1098XH Amsterdam The Netherlands

Tel: +31 20 4350 750 E-mail: info@bds.nl Web: www.bds.nl

Authorized by:
Emiel FelzelDate report (dd-mm-yyyy):
08-01-2024Head of Testing Laboratory

Octachlorodibenzofuran	0.52	pg / gram fat	U+/-	37%
dl-PCBs (accredited under RvA L401)				
3,3',4,4'-Tetrachlorobiphenyl (#77)	22	pg / gram fat	U+/-	39%
3,4,4',5-Tetrachlorobiphenyl (#81)	<2	pg / gram fat	U+/-	32%
3,3',4,4',5-Pentachlorobiphenyl (#126)	36	pg / gram fat	U+/-	26%
3,3',4,4',5,5'-Hexachlorobiphenyl (#169)	4.7	pg / gram fat	U+/-	53%
2,3,3',4,4'-Pentachlorobiphenyl (#105)	270	pg / gram fat	U+/-	51%
2,3,4,4',5-Pentachlorobiphenyl (#114)	9.1	pg / gram fat	U+/-	32%
2,3',4,4',5-Pentachlorobiphenyl (#118)	1500	pg / gram fat	U+/-	44%
2,3',4,4',5'-Pentachlorobiphenyl (#123)	24	pg / gram fat	U+/-	36%
2,3,3',4,4',5-Hexachlorobiphenyl (#156)	1300	pg / gram fat	U+/-	36%
2,3,3',4,4',5'-Hexachlorobiphenyl (#157)	110	pg / gram fat	U+/-	37%
2,3',4,4',5,5'-Hexachlorobiphenyl (#167)	750	pg / gram fat	U+/-	35%
2,3,3',4,4',5,5'-Heptachlorobiphenyl (#189)	390	pg / gram fat	U+/-	37%

Results given behind the less than sign are the limit of quantification.

compound out of recovery range

3,3',4,4',5-Pentachlorobiphenyl (#126) 48.8%

Fruit

5 PFAS

KLANT

KLANT			
Klantnaam	: ToxicoWatch Consultancy Abraham Kuyperstraat 6 8862 VS HARLINGEN		
Klantnummer Klantlocatie*	: 11492 : ToxicoWatch Consultancy		
	. Toxicowatch consultancy		
RAPPORT			
Rapportnumm		Bemonsterd	: niet do
Monstercode	: BPV240226165 gst : 26-2-2024		
Datum ontvan Startdatum an			
Datum rapport			
Gebruikte method			
MONSTER*			
Omschrijving	: 23TWS-Ap-Dv01		
Variëteit	: fruit - appel		
De resultaten in he	et rapport zijn van toepassing op het onderzochte monster, zoals de	eze is ontvangen.	
RESULTATEN			
Meth <mark>ode</mark>	Component	Eenheid	Concen- tratie
PFAS LCMSMS	Perfluor-1-octaansulfonaat (PFOS) Q	μg/kg	<0.1
PFAS LCMSMS	Perfluor-n-octaanzuur (PFOA) Q	μg/kg	<0.1
PFAS LCMSMS	Perfluor-n-nonaanzuur (PFNA) Q	μg/kg	<0.1
PFAS LCMSMS	Perfluor-1-hexaansulfonaat (PFHxS) Q	µg/kg	<0.1
PFAS LCMSMS	Perfluor-n-butaanzuur (PFBA) Q	µg/kg	<0.5
	Perfluor-n-pentaanzuur (PFPeA) Q	μg/kg	<0.1
PFAS LCMSMS	remain pendanzaar (rrren) a		
PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q	μg/kg	<0.1
		μg/kg	<0.1 <0.1
PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q		
PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q	μg/kg	<0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q	μg/kg μg/kg	<0.1 <0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFUnDA) Q	нв/кв нв/кв нв/кв	<0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFDnDA) Q Perfluor-n-dodecaanzuur (PFDoA) Q	μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFUnDA) Q Perfluor-n-dodecaanzuur (PFDoA) Q Perfluor-n-tridecaanzuur (PFTrDA) Q	μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFUnDA) Q Perfluor-n-dodecaanzuur (PFDA) Q Perfluor-n-tridecaanzuur (PFTrDA) Q Perfluor-n-tetradecaanzuur (PFTeDA) Q	μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFUnDA) Q Perfluor-n-toridecaanzuur (PFDA) Q Perfluor-n-tridecaanzuur (PFTDA) Q Perfluor-n-tetradecaanzuur (PFTeDA) Q Perfluor-1-butaansulfonaat (PFBS) Q	μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFDA) Q Perfluor-n-dodecaanzuur (PFDA) Q Perfluor-n-tridecaanzuur (PFDA) Q Perfluor-n-tridecaanzuur (PFTDA) Q Perfluor-n-tetradecaanzuur (PFTDA) Q Perfluor-n-tetradecaanzuur (PFTeDA) Q Perfluor-1-butaansulfonaat (PFBS) Q Perfluor-1-heptaansulfonaat (PFDS) Q Perfluor-1-decaansulfonaat (PFDS) Q Perfluor-1-dodecaansulfonaat (PFDS) Q	μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFUnDA) Q Perfluor-n-dodecaanzuur (PFDA) Q Perfluor-n-todecaanzuur (PFDA) Q Perfluor-n-tetradecaanzuur (PFTDA) Q Perfluor-n-tetradecaanzuur (PFTDA) Q Perfluor-1-butaansulfonaat (PFBS) Q Perfluor-1-heptaansulfonaat (PFHpS) Q Perfluor-1-decaanzuur (PFTDS) Q	μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFDA) Q Perfluor-n-dodecaanzuur (PFDA) Q Perfluor-n-tridecaanzuur (PFDA) Q Perfluor-n-tridecaanzuur (PFTDA) Q Perfluor-n-tetradecaanzuur (PFTDA) Q Perfluor-n-tetradecaanzuur (PFTeDA) Q Perfluor-1-butaansulfonaat (PFBS) Q Perfluor-1-heptaansulfonaat (PFDS) Q Perfluor-1-decaansulfonaat (PFDS) Q Perfluor-1-dodecaansulfonaat (PFDS) Q	μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFDA) Q Perfluor-n-dodecaanzuur (PFDA) Q Perfluor-n-tridecaanzuur (PFDA) Q Perfluor-n-tridecaanzuur (PFTrDA) Q Perfluor-n-tetradecaanzuur (PFTreDA) Q Perfluor-1-butaansulfonaat (PFBS) Q Perfluor-1-heptaansulfonaat (PFDS) Q Perfluor-1-dodecaansulfonaat (PFDS) Q Perfluor-1-dodecaansulfonaat (PFDS) Q Perfluor-1-nonaansulfonaat (PFNS) Q	μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFDA) Q Perfluor-n-dodecaanzuur (PFDA) Q Perfluor-n-tetradecaanzuur (PFToDA) Q Perfluor-n-tetradecaanzuur (PFToDA) Q Perfluor-n-tetradecaanzuur (PFToDA) Q Perfluor-1-butaansulfonaat (PFBS) Q Perfluor-1-heptaansulfonaat (PFDS) Q Perfluor-1-dodecaansulfonaat (PFDS) Q Perfluor-1-nonaansulfonaat (PFNS) Q Perfluor-1-nonaansulfonaat (PFNS) Q Perfluor-1-pentaansulfonaat (PFPS) Q	μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
PFAS LCMSMS PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q Perfluor-n-heptaanzuur (PFHpA) Q Perfluor-n-decaanzuur (PFDA) Q Perfluor-n-undecaanzuur (PFDA) Q Perfluor-n-dodecaanzuur (PFDA) Q Perfluor-n-tdecaanzuur (PFDA) Q Perfluor-n-tridecaanzuur (PFTDA) Q Perfluor-n-tetradecaanzuur (PFTeDA) Q Perfluor-n-tetradecaanzuur (PFTeDA) Q Perfluor-1-butaansulfonaat (PFBS) Q Perfluor-1-deccaansulfonaat (PFDS) Q Perfluor-1-dodecaansulfonaat (PFDS) Q Perfluor-1-nonaansulfonaat (PFNS) Q Perfluor-1-pentaansulfonaat (PFPS) Q	μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

* informatie verkregen van de klant

Normec Groen Agro Control is ingeschreven in het register van de Raad voor Accreditatie voor testlaboratoria onder nr. 1335 conform ISO/IEC 17025. De met 'Q' gemarkeerde parameters zijn onder accreditatie geanalyseerd. Details over de gebruikte methoden en meetonzekerheid per parameter zijn beschikbaar op aanvraag. Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

Algemeen directeur

ir. J. de Vriend C6637355 - 1 / 1

KLANT Klantnaam Klantnummer Klantlocatie*	: ToxicoWatci Abraham Ku 8862 VS HAI : 11492 : ToxicoWatci	yperstraat 6 RLINGEN						
RAPPORT								
Rapportnumm Monstercode Datum ontvan Startdatum an Datum rapport Gebruikte method	st : BPV2402263 gst : 26-2-2024 alyse : 26-2-2024 t : 4-3-2024	167 A195, eigen methode)		Bemo	onsterd	: niet do	DOF NGAC	
MONSTER* Omschrijving Variëteit De resultaten in he	: 23TWS-Grp- : fruit - druif et rapport zijn van toepassing	Dv01 op het onderzochte monster, z	oals deze is o	ntvanger	1.			
RESULTATEN								
Meth <mark>ode</mark>	Component				Eenheid	Concen- tratie		
PFAS LCMSMS	Perfluor-1-octaan sulfon	aat (PFOS) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-octaanzuur (PFOA) Q			μg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-nonaanzuur	(PFNA) Q			μg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-hexaansulfor	aat (PFHxS) Q			μg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-butaanzuur (PFBA) Q			µg/kg	<0.5		
PFAS LCMSMS	Perfluor-n-pentaanzuur	(PFPeA) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-hexaanzuur	PFHxA) Q			μg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-heptaanzuur	(PFHpA) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-decaanzuur (PFDA) Q	_		μg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-undecaanzuu	ır (PFUnDA) Q			μg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-n-dodecaanzu	ır (PFDoA) Q			μg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-n-tridecaanzuu	r (PFTrDA) Q			μg/kg	<0.1		
PFAS L <mark>CMSM</mark> S	Perfluor-n-tetradecaanz	uur (PFTeDA) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-butaansulfor	aat (PFBS) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-heptaansulfo	naat (PFHpS) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-decaansulfor	aat (PFDS) Q			μg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-1-dodecaansul	fonaat (PFDoS) Q			µg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-1-nonaansulfor	naat (PFNS) Q			μg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-pentaansulfo	naat (PFPeS) Q			μg/kg	<0.1		
PFAS LCMSMS	Perfluorhexaansulfonaa	t (4:2FTS) Q			μg/kg	<0.1		
PFAS LCMSMS	Perfluoroctaansulfonaa	t (6:2FTS) Q			μg/kg	<0.1		
PFAS LCMSMS	Perfluordecaansulfonaa	t (8:2FTS) Q			µg/kg	<0.1		

* informatie verkregen van de klant

Normec Groen Agro Control is ingeschreven in het register van de Raad voor Accreditatie voor testlaboratoria onder nr. L335 conform ISO/IEC 17025. De met 'Q' gemarkeerde parameters zijn onder accreditatie geanalyseerd. Details over de gebruikte methoden en meetonzekerheid per parameter zijn beschikbaar op aanvraag. Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

Algemeen directeur

ir. J. de Vriend C6637356 - 1/1

KLANT							
Klantnaam	: ToxicoWatch (Abraham Kuyr 8862 VS HARL	erstraat 6					
Klantnummer	: 11492	NGEN .					
Klantlocatie*	: ToxicoWatch (Consultancy					
RAPPORT							
Rapportnumm	er : C6637357			Bem	onsterd	: niet d	loor NGAC
Monstercode	: BPV24022616	8					
Datum ontvan Startdatum an	-						
Datum rapport							
Gebruikte method		95, eigen methode)					
MONSTER*							
Oms <mark>chrijving</mark>	: 23TWS-Grp-Vo	:01					
Vari <mark>ëteit</mark>	: fruit - druif	hat an demochts man tar	ala dana in r				
De resultaten in he	et rapport zijn van toepassing op	net onderzochte monster, zo	Jais deze is o	ntvange			
RESULTATEN							
Meth <mark>ode</mark>	Component				Eenheid	Concen- tratie	
PFAS LCMSMS	Perfluor-1-octaan sulfonaa	t (PFOS) Q			µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-octaanzuur (PF	DA) Q			µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-nonaanzuur (Pf	NA) Q			µg/kg	<0.1	
PFAS LCMSMS	Perfluor-1-hexaansulfonaa	t (PFHxS) Q			µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-butaanzuur (PF	BA) Q			µg/kg	<0.5	
PFAS LCMSMS	Perfluor-n-pentaanzuur (P	FPeA) Q			µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-hexaanzuur (PF	HxA) Q			µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-heptaanzuur (P	FHpA) Q			µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-decaanzuur (PF	DA) Q			µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-n-undecaanzuur	PFUnDA) Q			µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-n-dodecaanzuur	PFDoA) Q			µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-n-tridecaanzuur (PFTrDA) Q			µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-n-tetradecaanzuu	ir (PFTeDA) Q			µg/kg	<0.1	
PFAS LCMSMS	Perfluor-1-butaansulfonaa	t (PFBS) Q			μg/kg	<0.1	
PFAS LCMSMS	Perfluor-1-heptaansulfona	at (PFHpS) Q			µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-1-decaansulfonaa	t (PFDS) Q			µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-1-dodecaansulfor	naat (PFDoS) Q			μg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-1-nonaansulfonaa	at (PFNS) Q			μg/kg	<mark><0</mark> .1	
PFAS L <mark>CMSMS</mark>	Perfluor-1-pentaansulfona	at (PFPeS) Q			μg/kg	<mark><0</mark> .1	
PFAS <mark>LCMSMS</mark>	Perfluorhexaansulfonaat (4:2FTS) Q			μg/kg	<mark><0</mark> .1	
PFAS <mark>LCMSMS</mark>	Perfluoroctaansulfonaat (6	5:2FTS) Q			μg/kg	0.14	
	Perfluordecaansulfonaat (POINTS) O			μg/kg	<0.1	
PFAS LCMSMS		6:2F13) Q			10/10		

* informatie verkregen van de klant

Normec Groen Agro Control is ingeschreven in het register van de Raad voor Accreditatie voor testlaboratoria onder nr. 1315 conform ISO/IEC 17025. De met 'Q' gemarkeerde parameters zijn onder accreditatie geanalyseerd. Details over de gebruikte methoden en meetonzekerheid per parameter zijn beschikbaar op aanvraag. Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

Algemeen directeur

ir. J. de Vriend C6637357 - 1 / 1

KLANT								
Klantnaam	Abrah 8862 V	Watch Consu am Kuypersti /S HARLINGE	raat 6					
Klantnummer	: 11492							
Klantlocatie*	: I OXICO	Watch Consu	litancy					
RAPPORT								
Rapportnumme					Bemo	onsterd	: niet	do
Monstercode Datum ontvang		0226169						
Star <mark>tdatum ana</mark>								
Datum rapport								
Gebruikte methode	n : PFAS LC	MSMS (A195, eig	gen methode)		_			
MONSTER*								
Oms <mark>chrijving</mark>	: 23TWS	S_Fig-02-Dv0	2					
Vari <mark>ëteit</mark>	: pine n							
De resultaten in he	t rapport zijn van toe	passing op het or	nderzochte monster, zo	als deze is o	ontvanger	1.		
RESULTATEN								
Methode	Component					Eenheid	Concen- tratie	
PFAS LCMSMS	Perfluor-1-octaan	nsulfonaat (PFC	DS)			μg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-octaar	nzuur (PFO <mark>A)</mark>				μg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-nonaa	nzuur (PF <mark>NA)</mark>				μg/kg	<0.1	
PFAS LCMSMS	Perfluor-1-hexaa	nsulfonaa <mark>t (PFI</mark>	HxS)			μg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-butaar	nzuur (PF <mark>BA)</mark>				μg/kg	<0.5	
PFAS LCMSMS	Perfluor-n-pentaa	anzuur (PFPeA))			μg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-hexaar	nzuur (PFHxA)				µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-heptaa	anzuur (<mark>PFHpA</mark>	.)			µg/kg	<0.1	
PFAS LCIVISIVIS								1
PFAS LCMSMS	Perfluor-n-decaar	nzuur (<mark>PFDA)</mark>				μg/kg	<0.1	
PFAS LCMSMS			DA)				<0.1 <0.1	
PFAS LCMSMS	Perfluor-n-decaar	aanzu <mark>ur (PFUn</mark>				μg/kg		
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-decaar Perfluor-n-undeca	aanzuur (PFUn aanzuur (PFDo	A)			μg/kg μg/kg	<0.1	
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-decaar Perfluor-n-undeca Perfluor-n-dodeca	aanzuur (PFUn aanzuur (PFDo aanzuur (PFTrD	DA)			µg/kg µg/kg µg/kg	<0.1 <0.1	
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-decaar Perfluor-n-undeca Perfluor-n-dodeca Perfluor-n-trideca	aanzuur (PFUn aanzuur (PFDo aanz <mark>uur (PFTrD</mark> ecaanzuur (PF	DA) DA) TeDA)			μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1	
	Perfluor-n-decaar Perfluor-n-undeca Perfluor-n-dodeca Perfluor-n-trideca Perfluor-n-tetrada	aanzuur (PFUn aanzuur (PFDo aanzuur (PFTrD ecaanzuur (PFT nsulfonaat (PFF	DA) DA) TeDA) BS)			μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1	
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-decaal Perfluor-n-undeca Perfluor-n-dodeca Perfluor-n-trideca Perfluor-n-tetrad Perfluor-1-butaar	aanzuur (PFUn aanzuur (PFDo aanzuur (PFTrD ecaanzuur (PF nsulfonaat (PF ansulfonaat (PF	DA) DA) TeDA) BS) FHpS)			μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1	
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-decaal Perfluor-n-undec Perfluor-n-dodec Perfluor-n-trideca Perfluor-n-tetrad Perfluor-1-butaar Perfluor-1-heptaa	aanzuur (PFUn aanzuur (PFDo aanzuur (PFTrD ecaanzuur (PFTr nsulfonaat (PF nsulfonaat (PF nsulfonaat (PFI	AA) DAA) TEDAA) BSS) FHpSS) DSS)			μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-decaat Perfluor-n-undec Perfluor-n-dodec Perfluor-n-trideca Perfluor-n-tertad Perfluor-1-butaat Perfluor-1-heptaa Perfluor-1-decaat	aanzuur (PFUn aanzuur (PFDo aanzuur (PFTrD ecaanzuur (PFTrD nsulfonaat (PFI nsulfonaat (PFI nsulfonaat (PFI aansulfonaat (AA) DA) TEDA) BS) FHpS) DS) PFDoS)			μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-decaat Perfluor-n-undec Perfluor-n-dodec Perfluor-n-trideca Perfluor-1-butaar Perfluor-1-heptaa Perfluor-1-decaat Perfluor-1-dodec	aanzuur (PFUn aanzuur (PFDo aanzuur (PFTrE ecaanzuur (PF nsulfonaat (PFf nsulfonaat (PFf aansulfonaat (PFf aansulfonaat (PFf nsulfonaat (PFf)	AA) AA) TEDA) BS) FHpS) DS) PFDoS) NS)			µg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS PFAS LCMSMS	Perfluor-n-decaar Perfluor-n-dodec Perfluor-n-dodec Perfluor-n-trideca Perfluor-1-butaar Perfluor-1-heptaa Perfluor-1-dodec Perfluor-1-nonaa	aanzuur (PFUn aanzuur (PFDo aanzuur (PFTrC ecaanzuur (PFTrC ecaanzuur (PF nsulfonaat (PFI aansulfonaat (PFI aansulfonaat (PFI nsulfonaat (PFI aansulfonaat (PFI	AA) DAA) TEDAA) BSS FHIPSS DSS PFDDOSS FNDSS FFPESS			µg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
PFAS LCMSMS PFAS L	Perfluor-n-decaat Perfluor-n-decaat Perfluor-n-decaat Perfluor-n-trideca Perfluor-1-butaar Perfluor-1-heptaa Perfluor-1-decaat Perfluor-1-decaat Perfluor-1-nonaa Perfluor-1-pentaat	aanzuur (PFUn aanzuur (PFDo aanzuur (PFTrC ecaanzuur (PFTrC ecaanzuur (PF nsulfonaat (PF aansulfonaat (PF aansulfonaat (PF ansulfonaat (PF ansulfonaat (PI ulfonaat (4:2FT	AA) DA) TeDA) BS) EHpS) DS) PFDoS) PFDoS) S) FPeS) S)			µg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
PFAS LCMSMS PFAS LCMSMS	Perfluor-n-decaat Perfluor-n-dodect Perfluor-n-dodect Perfluor-n-tridect Perfluor-n-tridect Perfluor-1-butaar Perfluor-1-decaat Perfluor-1-dodect Perfluor-1-nonaa Perfluor-1-pentaat Perfluor-1-pentaat	aanzuur (PFUn aanzuur (PFDo aanzuur (PFTrC ecaanzuur (PFTrC ecaanzuur (PF nsulfonaat (PFI aansulfonaat (PFI aansulfonaat (PFI aansulfonaat (PFI aansulfonaat (PFI ansulfonaat (PFI ansulfonaat (PFI ansulfonaat (PFI ansulfonaat (PFI ansulfonaat (PFI) ansulfonaat (PFI)	AA) DA) TeDA) BS) DS) DS) DS) PFDOS) PFDOS) S) S)			µg/kg µg/kg	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	

* informatie verkregen van de klant

Algemeen directeur

ir. J. de Vriend C6637358 - 1/1

Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

KLANT					
Klantnaam Klantnummer	: ToxicoWatch Consultancy Abraham Kuyperstraat 6 8862 VS HARLINGEN : 11492				
Klantlocatie*	: ToxicoWatch Consultancy				
RAPPORT					
Rapportnumm	er : C6636890	Bemon	sterd	: niet door NGAC	
Monstercode	: BPV240228567				
Datum ontvan Startdatum an	•				
Datum rapport					
Gebruikte method	en : PFAS LCMSMS (A195, eigen methode)				
MONSTER*					
Oms <mark>chrijving</mark>	: 23TWS-Ap-TnB01				
Vari <mark>ëteit</mark>	: Fruit - appel				
De resultaten in he	et rapport zijn van toepassing op het onderzochte monster, zoals o	leze is ontvangen.			
RESULTATEN					
Methode	Component		Eenheid	Concen- tratie	
PFAS <mark>LCMSMS</mark>	Perfluor-1-octaansulfonaat (PFOS) Q		µg/kg	<0.1	
PFAS <mark>LCMSMS</mark>	Perfluor-n-octaanzuur (PFOA) Q		µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-nonaanzuur (PFNA) Q		µg/kg	<0.1	
PFAS <mark>LCMSMS</mark>	Perfluor-1-hexaansulfonaat (PFHxS) Q		µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-butaanzuur (PFBA) Q		µg/kg	<0.5	
PFAS LCMSMS	Perfluor-n-pentaanzuur (PFPeA) Q		µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q		µg/kg	<0.1	
PFAS <mark>LCMSMS</mark>	Perfluor-n-heptaanzuur (PFHpA) Q		µg/kg	<0.1	
PFAS LCMSMS	Perfluor-n-decaanzuur (PFDA) Q		µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-n-undecaanzuur (PFUnDA) Q		µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-n-dodecaanzuur (PFDoA) Q		µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-n-tridecaanzuur (PFTrDA) Q		µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-n-tetradecaanzuur (PFTeDA) Q		µg/kg	<0.1	
PFAS LCMSMS	Perfluor-1-butaansulfonaat (PFBS) Q		µg/kg	<0.1	
PFAS LCMSMS	Perfluor-1-heptaansulfonaat (PFHpS) Q		µg/kg	<0.1	
PFAS L <mark>CMSMS</mark>	Perfluor-1-decaansulfonaat (PFDS) Q		µg/kg	< <mark>0</mark> .1	
PFAS L <mark>CMSMS</mark>	Perfluor-1-dodecaansulfonaat (PFDoS) Q		µg/kg	< <mark>0</mark> .1	
PFAS L <mark>CMSMS</mark>	Perfluor-1-nonaansulfonaat (PFNS) Q		µg/kg	< <mark>0</mark> .1	
PFAS L <mark>CMSMS</mark>	Perfluor-1-pentaansulfonaat (PFPeS) Q		µg/kg	< <mark>0</mark> .1	
PFAS LCMSMS	Perfluorhexaansulfonaat (4:2FTS) Q		µg/kg	<0.1	
PFAS LCMSMS	Perfluoroctaansulfonaat (6:2FTS) Q		µg/kg	<0.1	
PFAS LCMSMS	Perfluordecaansulfonaat (8:2FTS) Q		µg/kg	<0.1	
				<0.1	

* informatie verkregen van de klant

Normec Groen Agro Control is ingeschreven in het register van de Raad voor Accreditatie voor testlaboratoria onder nr. 1335 conform ISO/IEC 17025. De met 'Q' gemarkeerde parameters zijn onder accreditatie geanalyseerd. Details over de gebruikte methoden en meetonzekerheid per parameter zijn beschikbaar op aanvraag. Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

Normec Groen Agro Control | Distributieweg 1, 2645 EG Delfgauw | Nederland | T+31 (0)15 2572 511 | E info.agro@normecgroup.com Al onze werkzaamheden worden uitgevoerd onder de leveringsvoorwaarden zoals gedeponeerd bij de KvK Haaglanden, handelsregisternr. 27294457. ir. J. de Vriend C6636890 - 1/1

Eggs

4 PFAS

Klantnaam : ToxicoWatch Consultancy Abraham Kuyperstraat 6 8862 VS HARLINGEN Klantnummer : 11492 Klantlocatie* : ToxicoWatch Consultancy									
RAPPORT									
Rapportnumm		6637378			Bem	onsterd	: niet	door NGAC	
Monstercode		PV240226157							
Datum ontvan Startdatum an	-	5-2-2024 3-2024							
Datum rappor		3-2024							
Gebruikte method			5, eigen methode)						
MONSTER*									
Omschrijving	: 23	TWS-EGG-D	/-02						
Vari <mark>ëteit</mark>	: Eg								
De resultaten in he	et rapport zijn va	n toepassing op h	net onderzochte monster, z	oals deze	is ontvange	n.			
RESULTATEN									
Meth <mark>ode</mark>	Component					Eenheid	Concen- tratie	N <mark>orm EU</mark>	Norm EU %
PFAS LCMSMS	Perfluor-1-o	<mark>ctaan</mark> sulfonzuu	r (PFOS) Q			µg/kg	0.43	1.0	43.0
PFAS LCMSMS	Perfluor-n-o	<mark>ctaan</mark> zuur (PFO	A) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-n	onaanzuur (PFI	NA) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-h	exaansulfonzul	ır (PFHxS) Q			µg/kg	<0.1		
PFAS LCMSMS	Som van PFC	<mark>DS, P</mark> FOA, PFN <mark>A</mark>	en PFHxS			µg/kg	0.43	1.7	25.3
PFAS LCMSMS	Perfluor-n-b	utaanzuur (PFB	A) Q			µg/kg	<0.5		
PFAS LCMSMS	Perfluor-n-p	entaanzuur (PF	PeA) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-h	exaanzuur (PFF	ixA) Q			µg/kg	<0.1		
PFAS <mark>LCMSMS</mark>	Perfluor-n-h	eptaanzuur (PF	HpA) Q			µg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-n-d	ecaanzuur (PFD	DA) Q			µg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-n-u	ndecaanzuur (F	PFUnDA) Q			µg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-n-d	odecaanz <mark>uur (</mark> F	PFDoA) Q			µg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-n-tr	ridecaanzuur (P	FTrDA) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-te	etradecaanzuur	(PFTeDA) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-b	utaansulf <mark>onzuu</mark>	ır (PFBS) Q			µg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-1-h	eptaansulf <mark>onzu</mark>	ur (PFHpS) Q			µg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-1-d	ecaansulfonzuu	ur (PFDS) Q			µg/kg	<0.1		
PFAS L <mark>CMSMS</mark>	Perfluor-1-d	odecaansulfon:	zuur (PFDoS) Q			µg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-n	onaansulfonzu	ur (PFNS) Q			µg/kg	<0.1		
	Perfluor-1-p	entaansulfonzu	ur (PFPeS) Q			µg/kg	<0.1		
PFAS LCMSMS	A D Fluentele	meersulfonzuu	ur (4:2FTS) Q			µg/kg	<0.1		
PFAS LCMSMS PFAS <mark>LCMSMS</mark>	4:2 Fluorteic								
		omeersulfonzu	ır (6:2FTS) Q			µg/kg	<0.1		
PFAS LCMSMS	6:2 Fluorteld	omeersulfonzuu omeersulfonzuu				μg/kg μg/kg	<0.1 <0.1		

* informatie verkregen van de klant

Norm EU: Het maximumgehalte conform verordening (EG) nr. 2023/915, geconsolideerde versie.

Normec Groen Agro Control is ingeschreven in het register van de Raad voor Accreditatie voor testlaboratoria onder nr. L335 conform ISO/IEC 17025. De met 'Q' gemarkeerde parameters zijn onder accreditatie geanalyseerd. Details over de gebruikte methoden en meetonzekerheid per parameter zijn beschikbaar op aanvraag. Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

KLANT Klantnaam : ToxicoWatch Consultancy Abraham Kuyperstraat 6 8862 VS HARLINGEN Klantnummer : 11492 Klantlocatie* : ToxicoWatch Consultancy RAPPORT : C6637381 Rapportnummer Bemonsterd : niet door NGAC : BPV240226160 Monstercode Datum ontvangst : 26-2-2024 Startdatum analyse : 26-2-2024 : 4-3-2024 Datum rapport Gebruikte methoden : PFAS LCMSMS (A195, eigen methode) **MONSTER*** Omschrijving : 23TWS-EGG-HS-01 Variëteit : Egg De resultaten in het rapport zijn van toepassing op het onderzochte monster, zoals deze is ontvangen. RESULTATEN Concen-Methode Norm EU Norm EU % Component Eenheid tratie PFAS LCMSMS Perfluor-1-octaansulfonzuur (PFOS) Q µg/kg 0.43 1.0 43.0 PFAS LCMSMS Perfluor-n-octaanzuur (PFOA) Q µg/kg < 0.1 µg/kg <0.1 PFAS LCMSMS Perfluor-n-nonaanzuur (PFNA) Q PFAS LCMSMS Perfluor-1-hexaansulfonzuur (PFHxS) Q µg/kg <0.1 Som van PFOS, PFOA, PFNA en PFHxS 0.43 1.7 25.3 PFAS LCMSMS µg/kg <0.5 PFAS LCMSMS Perfluor-n-butaanzuur (PFBA) Q µg/kg < 0.1 PFAS LCMSMS Perfluor-n-pentaanzuur (PFPeA) Q µg/kg <0.1 PFAS LCMSMS Perfluor-n-hexaanzuur (PFHxA) Q µg/kg <0.1 µg/kg PFAS LCMSMS Perfluor-n-heptaanzuur (PFHpA) Q <0.1 µg/kg PFAS LCMSMS Perfluor-n-decaanzuur (PFDA) Q <0.1 µg/kg PFAS LCMSMS Perfluor-n-undecaanzuur (PFUnDA) Q <0.1 µg/kg PFAS LCMSMS Perfluor-n-dodecaanzuur (PFDoA) Q <0.1 PEAS LCMSMS Perfluor-n-tridecaanzuur (PFTrDA) Q µg/kg < 0.1 PEAS LCMSMS Perfluor-n-tetradecaanzuur (PFTeDA) Q ug/kg <0.1 PEASICMSMS Perfluor-1-butaansulfonzuur (PFBS) Q µg/kg PFAS LCMSMS Perfluor-1-heptaansulfonzuur (PFHpS) Q µg/kg < 0.1 PFAS LCMSMS Perfluor-1-decaansulfonzuur (PFDS) Q µg/kg <0.1 PFAS LCMSMS Perfluor-1-dodecaansulfonzuur (PFDoS) Q µg/kg <0.1 µg/kg PFAS LCMSMS Perfluor-1-nonaansulfonzuur (PFNS) Q <0.1 PFAS LCMSMS Perfluor-1-pentaansulfonzuur (PFPeS) Q µg/kg <0.1

PFAS LCMSMS 4:2 Fluortelomeersulfonzuur (4:2FTS) Q µg/kg <0.1 <0.1 PFAS LCMSMS 6:2 Fluortelomeersulfonzuur (6:2FTS) Q µg/kg <0.1 PFAS LCMSMS 8:2 Fluortelomeersulfonzuur (8:2FTS) Q µg/kg <0.1 PFAS LCMSMS Hexafluorpropyleenoxide dimeer zuur (HFPO-DA of GenX) Q µg/kg

* informatie verkregen van de klant

Norm EU: Het maximumgehalte conform verordening (EG) nr. 2023/915, geconsolideerde versie.

Normec Groen Agro Control is ingeschreven in het register van de Raad voor Accreditatie voor testlaboratoria onder nr. L335 conform ISO/IEC 17025. De met 'Q' gemarkeerde parameters zijn onder accreditatie geanalyseerd. Details over de gebruikte methoden en meetonzekerheid per parameter zijn beschikbaar op aanvraag. Dit rapport mag zonder schriftelijke toestermning niet anders dan in zijn geheel worden gereproduceerd.

Klantnaam	: ToxicoWatch Consultancy Abraham Kuyperstraat 6 8862 VS HARLINGEN					
Klantnummer	: 11492					
Klantlocatie*	: ToxicoWatch Consultancy					
RAPPORT						
Rapportnumme	r : C6637380		Bemonsterd	: niet	door NGAC	
Monstercode	: BPV240226159					
Datum ontvang						
Startdatum ana	lyse : 26-2-2024 : 4-3-2024					
Datum rapport Gebruikte methode		ode)				
MONSTER*						
Omschrijving	: 23TWS-EGG-TNB-01					
Variëteit	: Egg					
De resultaten in het	rapport zijn van toepassing op het onderzoch	te monster, zoals deze is o	ontvangen.			
RESULTATEN						
Meth <mark>ode</mark>	Component		Eenheid	Concen- tratie	N <mark>orm EU</mark>	Norm EU %
PFAS LCMSMS	Perfluor-1-octaansulfonzuur (PFOS) Q		μg/kg	0.75	1.0	75.0
PFAS LCMSMS	Perfluor-n-octaanzuur (PFOA) Q		µg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-nonaanzuur (PFNA) Q		µg/kg	0.13	0.7	18.6
PFAS LCMSMS	Perfluor-1-hexaansulfonzuur (PFHxS)	L	µg/kg	<0.1		
PFAS LCMSMS	Som van PFOS, PFOA, PFNA en PFHxS		μg/kg	0.88	1.7	51.8
PFAS LCMSMS	Perfluor-n-butaanzuur (PFBA) Q		μg/kg	<0.5		
PFAS LCMSMS	Perfluor-n-pentaanzuur (PFPeA) Q		μg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-hexaanzuur (PFHxA) Q		µg/kg	<0.1		
	Perfluor-n-heptaanzuur (PFHpA) Q		μg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-decaanzuur (PFDA) Q		μg/kg	0.11		
	Perfluor-n-undecaanzuur (PFUnDA) Q		μg/kg	0.17		
PFAS LCMSMS	Perfluor-n-dodecaanzuur (PFDoA) Q		μg/kg	<0.1		
PFAS LCMSMS	Perfluor-n-tridecaanzuur (PFTrDA) Q		µg/kg	0.11		
PFAS LCMSMS	Perfluor-n-tetradecaanzuur (PFTeDA)	2	μg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-butaansulfonzuur (PFBS) Q		µg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-heptaansulfonzuur (PFHpS)	Q	μg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-decaansulfonzuur (PFDS) Q		μg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-dodecaansulfonzuur (PFDoS	Q	μg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-nonaansulfonzuur (PFNS) Q		μg/kg	<0.1		
PFAS LCMSMS	Perfluor-1-pentaansulfonzuur (PFPeS)		μg/kg	<0.1		
PFAS LCMSMS	4:2 Fluortelomeersulfonzuur (4:2FTS)		μg/kg	<0.1		
PFAS LCMSMS			μg/kg	0.27		
	6:2 Fluortelomeersulfonzuur (6:2FTS) (μg/kg	<0.1		
PFAS LCMSMS	8:2 Fluortelomeersulfonzuur (8:2FTS)					
FAS LCMSMS	Hexafluorpropyleenoxide dimeer zuur	HFPO-DA of GenX) Q	µg/kg	<0.1		

informatie verkregen van de klant
 Norm EU: Het maximumgehalte conform verordening (EG) nr. 2023/915, geconsolideerde versie.

Normec Groen Agro Control is ingeschreven in het register van de Raad voor Accreditatie voor testlaboratoria onder nr. 1315 conform ISO/IEC 17025. De met 'Q' gemarkeerde parameters zijn onder accreditatie geanalyseerd. Details over de gebruikte methoden en meetonzekerheid per parameter zijn beschikbaar op aanvraag. Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

Normec Groen Agro Control | Distributieweg 1, 2645 EG Delfgauw | Nederland | T +31 (0)15 2572 511 | E info.agro@normecgroup.com Al onze werkzaamheden worden uitgevoerd onder de leveringsvoorwaarden zoals gedeponeerd bij de KvK Haaglanden, handelsregisternr. 2729457.

ir. J. de Vriend C6637380 - 1 / 1

KLANT Klantnaam : ToxicoWatch Consultancy Abraham Kuyperstraat 6 8862 VS HARLINGEN : 11492 Klantnummer Klantlocatie* : ToxicoWatch Consultancy RAPPORT Bemonsterd Rapportnummer : C6637379 : niet door NGAC : BPV240226158 Monstercode : 26-2-2024 Datum ontvangst Startdatum analyse : 26-2-2024 Datum rapport : 4-3-2024 Gebruikte methoden : PFAS LCMSMS (A195, eigen methode) **MONSTER*** Omschrijving : 23TWS-EGG-ZA-02 Vari<mark>ëteit</mark> : Egg De resultaten in het rapport zijn van toepassing op het onderzochte monster, zoals deze is ontvangen RESULTATEN Concen Norm EU % Meth<mark>ode</mark> Component Eenheid Norm EU tratie 3.0 1.0 300 PFAS LCMSMS Perfluor-1-octaansulfonzuur (PFOS) Q µg/kg <0.1 PFAS LCMSMS Perfluor-n-octaanzuur (PFOA) Q µg/kg <0.1 PFAS LCMSMS Perfluor-n-nonaanzuur (PFNA) Q µg/kg <0.1 PFAS LCMSMS Perfluor-1-hexaansulfonzuur (PFHxS) Q µg/kg 1.7 176 3.0 PFAS LCMSMS Som van PFOS, PFOA, PFNA en PFHxS µg/kg PFAS LCMSMS Perfluor-n-butaanzuur (PFBA) Q µg/kg <0.5 PFAS LCMSMS Perfluor-n-pentaanzuur (PFPeA) Q µg/kg < 0.1 PFAS LCMSMS Perfluor-n-hexaanzuur (PFHxA) Q µg/kg <0.1 PFAS LCMSMS Perfluor-n-heptaanzuur (PFHpA) Q µg/kg <0.1 PFAS LCMSMS Perfluor-n-decaanzuur (PFDA) Q µg/kg <0.1 PFAS LCMSMS Perfluor-n-undecaanzuur (PFUnDA) Q µg/kg 0.15 PFAS LCMSMS Perfluor-n-dodecaanzuur (PFDoA) Q µg/kg < 0.1 PFAS LCMSMS Perfluor-n-tridecaanzuur (PFTrDA) Q µg/kg 0.12 PFAS LCMSMS Perfluor-n-tetradecaanzuur (PFTeDA) Q µg/kg < 0.1 PFAS LCMSMS Perfluor-1-butaansulfonzuur (PFBS) Q µg/kg <0.1 PFAS L<mark>CMSMS</mark> Perfluor-1-heptaansulfonzuur (PFHpS) Q µg/kg <0.1 Perfluor-1-decaansulfonzuur (PFDS) Q µg/kg <0.1 PFAS LCMSMS Perfluor-1-dodecaansulfonzuur (PFDoS) Q <0.1 PFAS LCMSMS µg/kg Perfluor-1-nonaansulfonzuur (PFNS) Q <0.1 PFAS LCMSMS µg/kg <0.1 PFAS LCMSMS Perfluor-1-pentaansulfonzuur (PFPeS) Q µg/kg <0.1 PFAS LCMSMS 4:2 Fluortelomeersulfonzuur (4:2FTS) Q µg/kg <0.1 6:2 Fluortelomeersulfonzuur (6:2FTS) Q µg/kg PFAS LCMSMS <0.1 8:2 Fluortelomeersulfonzuur (8:2FTS) Q µg/kg PFAS LCMSMS <0.1 PFAS LCMSMS µg/kg Hexafluorpropyleenoxide dimeer zuur (HFPO-DA of GenX) Q

* informatie verkregen van de klant

Norm EU: Het maximumgehalte conform verordening (EG) nr. 2023/915, geconsolideerde versie.

Normec Groen Agro Control is ingeschreven in het register van de Raad voor Accreditatie voor testlaboratoria onder nr. 1335 conform ISO/IEC 17025. De met 'Q' gemarkeerde parameters zijn onder accreditatie geanalyseerd. Details over de gebruikte methoden en meetonzekerheid per parameter zijn beschikbaar op aanvraag. Di trapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

Fruit

PAH 2 x

Pine needles

PAH 1 x

Mos

PAH 7 x

Customer name	: ToxicoWatch Const Abraham Kuyperst 8862 VS HARLINGE	raat 6			
Customer no.	: 11492				
Customer location*	: ToxicoWatch Const	ultancy			
REPORT					
Report code	: C6642576		Sampled by	: not by NGAC	
Sample code	: U183240228569				
Date of receipt	: 28-2-2024				
Analysis start date	: 28-2-2024				
Rep <mark>ort date</mark>	: 14-3-2024				
Description	: 23TWS-Grp-Vc01				
Variety	: Fruit - druif				
The results in the report appl		as received.			
PAHs analysis	to the investigated sumpti	Results	Unit	Method	
Acenaphthylene		<1,0	μg/kg	GC-MS/MS	
Acenaphthene Fluoren		<1,0 <1,0	μg/kg μg/kg		
Phenanthrene		9,5	μg/kg		
Anthracene		1,5	μg/kg		
Fluoranthene		8,6	μg/kg		
Pyren Benzo(a)anthracene		6,7 <1,0	μg/kg μg/kg		
Chrysen		1,2	μg/kg		
Benzo(b)fluoranthene		<1,0	μg/kg		
Benzo(k)fluoranthene		<1,0	μg/kg		
Benzo(a)pyrene Dibenz(ah)anthracene		<1,0 <1,0	μg/kg μg/kg		
Benzo(g,h,i)perylene		<1,0	μg/kg		
Indeno(1,2,3cd)pyrene		<1,0	μg/kg		
Sum Chr, B(b)f, B(a)p, B(a)a	1,2	µg/kg		
i sclaimer The analysis on this sample h	ave been outsourced.				
					manager
				General	manager
				General	manager
				General	manager
artial reproduction of this rep	ort is only allowed with writ	ten permission.			manager

Customer name	: ToxicoWatch Co						
	Abraham Kuype 8862 VS HARLIN						
Customer no.	: 11492						
Customer location*	: ToxicoWatch Co	onsultancy					
EPORT							
Report code	: C6642575		San	npled by	: not by NG	AC	
Sample code	: U183240228568	8					
Date of receipt	: 28-2-2024						
Analysis start date	: 28-2-2024						
Report date	: 14-3-2024						
Description	: 23TWS-Grp-Dv0)1					
Variety	: Fruit - druif						
The results in the report appl		mple as received.					
PAHs analysis		Results		Unit	1	Method	
Acenaphthylene		<1,0		μg/kg	(GC-MS/MS	
Acenaphthene		<1,0		μg/kg			
Fluoren		<1,0		μg/kg			
Phenanthrene Anthracene		4,8		μg/kg			
Fluoranthene		<1,0 4,8		μg/kg μg/kg			
Pyren		3,5		μg/kg			
Benzo(a)anthracene		<1,0		μg/kg			
Chrysen		<1,0		μg/kg			
Benzo(b)fluoranthene Benzo(k)fluoranthene		<1,0 <1,0		μg/kg μg/kg			
Benzo(a)pyrene		<1,0		μg/kg			
Dibenz(ah)anthracene		<1,0		µg/kg			
Benzo(g,h,i)perylene		<1,0		μg/kg			
Indeno(1,2,3cd)pyrene		<1,0		μg/kg			
Sum Chr, B(b)f, B(a)p, B(a)	a			μg/kg			
			_	μ6/ ^6			
* information provided by cu				μβ/ κβ			
	stomer	-		μ8/ κ8			
* information provided by cu: isclai<mark>m</mark>er	stomer	-		μ5/^5			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ <u>5</u> / ν ₅			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ <u>ξ</u> /ν <u>ξ</u>			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ ng			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ ng			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ ng			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ ng			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ ng			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ ng			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ ng			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ ng			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ ng			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ rg			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ vβ			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ vβ			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ vB			
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ vg			
* information provided by cu: isclai<mark>m</mark>er	stomer			ΥΥΥ Υ			
* information provided by cu: isclai<mark>m</mark>er	stomer			ΥΥΥ ΥΥΥ Υ			
* information provided by cu: isclai<mark>m</mark>er	stomer			ΥΥΥ ΥΥΥ Υ			General mana
* information provided by cu: isclai<mark>m</mark>er	stomer			μ£/ vβ			General mana
* information provided by cu: isclai<mark>m</mark>er	stomer			ΡΕΛΛΡ			General mana
* information provided by cu: isclai<mark>m</mark>er	stomer ave been outsourced.	written permission		μ£/ rg			General mana

MOS

7 x PAH

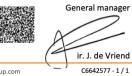
CUSTOMER Customer name : ToxicoWatch Consultancy Abraham Kuyperstraat 6 8862 VS HARLINGEN Customer no. : 11492 Customer location* : ToxicoWatch Consultancy REPORT : C6642134 Report code Sampled by : not by NGAC : U183240226171 Sample code Date of receipt : 26-2-2024 Analysis start date : 26-2-2024 Report date : 14-3-2024 SAMPLE* **Description** : 23TWS-PN-DV01 Vari<mark>ety</mark> : Mos The results in the report apply to the investigated sample as received. PAHs analysis **Results** Unit Method Acenaphthylene <1,0 µg/kg GC-MS/MS <1,0 <1,0 <1,0 μg/kg μg/kg Acenaphthene Fluoren <1,0 6,0 <1,0 9,2 12,0 Phenanthrene µg/kg Anthracene μg/kg μg/kg Fluoranthene Pyre<mark>n</mark> Ben<mark>zo(a)anthracene</mark> μg/kg μg/kg 3,0 8,5 2,6 1,2 <1,0 Chrysen Benzo(b)fluoranthene μg/kg μg/kg Benzo(k)fluoranthene Benzo(a)pyrene μg/kg μg/kg Dibenz(ah)anthracene <1,0 µg/kg Benzo(g,h,i)perylene Indeno(1,2,3cd)pyrene <1,0 μg/kg μg/kg <1,0 Sum Chr, B(b)f, B(a)p, B(a)a 14,1 µg/kg * information provided by customer Disclaimer The an<mark>alysis on this sample have b</mark>een outsou<mark>rced.</mark> General manager Partial reproduction of this report is only allowed with written permission. ir. J. de Vriend Normec Groen Agro Control | Distributieweg 1, 2645 EG Delfgauw | Netherlands | T +31 (0)15 2572 511 | E info.agro@normecgroup.com Terms of delivery are deposited at the Chamber of Commerce Haaglanden, nr. 27294457. C6642134 - 1/1

CUSTOMER Customer name : ToxicoWatch Consultancy Abraham Kuyperstraat 6 8862 VS HARLINGEN : 11492 Customer no. Customer location* : ToxicoWatch Consultancy REPORT Report code : C6642135 Sampled by : not by NGAC Sample code : U183240226172 : 26-2-2024 Date of receipt : 26-2-2024 Analysis start date Rep<mark>ort date</mark> : 14-3-2024 SAMPLE* Description : 23TWS-MOS-DV03 Variety : Mos The results in the report apply to the investigated sample as received. PAHs analysis <u>Results</u> <u>Unit</u> Method <1,0 <1,0 µg/kg µg/kg Acenaphthylene Ace<mark>naphthene</mark> GC-MS/MS <1,0 5,6 <1,0 μg/kg μg/kg Fluo<mark>ren</mark> Phenanthrene Anthracene µg/kg 16,9 11,4 2,8 10,1 μg/kg μg/kg Fluoranthene Pyren Benzo(a)anthracene Chrysen Benzo(b)fluoranthene Benzo(k)fluoranthene µg/kg µg/kg 14,0 5,1 5,7 1,2 9,3 11,2 μg/kg μg/kg μg/kg μg/kg Benzo(a)pyrene Dibenz(ah)anthracene Benzo(g,h,i)perylene Indeno(1,2,3cd)pyrene μg/kg μg/kg Sum Chr, B(b)f, B(a)p, B(a)a 32,6 µg/kg * information provided by customer Disclaimer The analysis on this sample have been outsourced. General manager Partial reproduction of this report is only allowed with written permission ir. J. de Vriend C6642135 - 1 / 1

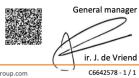
Customer name	: ToxicoWatch C Abraham Kuyp 8862 VS HARLI	erstraat 6				
Customer no.	: 11492					
Customer location*	: ToxicoWatch C	onsultancy				
REPORT						
Report code	: C6642136		Sampled by		not by NGAC	
Sample code	: U18324022617	73	campion of			
Date of receipt	: 26-2-2024					
Analysis start date	: 26-2-2024					
Report date	: 14-3-2024					
SAMPLE*						
Description	: 23TWS-MOS-D	V01				
Variety	: Mos					
The results in the report appl	y to the investigated s					
PAHs analysis		Results		<u>Unit</u>	Method	
Acenaphthylene		<1,0		µg/kg	GC-MS/MS	
Acenaphthene		<1,0		µg/kg		
Fluoren		1,5		µg/kg		
Phenanthrene Anthracene		32,2 2,8		μg/kg μg/kg		
Fluoranthene		95,5		μg/kg		
Pyren		68,7		μg/kg		
Benzo(a)anthracene		25,9		µg/kg		
Chrysen		53,7		µg/kg		
Benzo(b)fluoranthene		66,1		µg/kg		
Benzo(k)fluoranthene Benzo(a)pyrene		24,3 40,2		μg/kg μg/kg		
Dibenz(ah)anthracene		6,2		µg/kg		
Benzo(g,h,i)perylene		46,2		µg/kg		
Indeno(1,2,3cd)pyrene		52,3		µg/kg		
Sum Chr, B(b)f, B(a)p, B(a)a	186		µg/kg		
The analysis on this sample h	ave been outsourced.					
					எல ாசும Gener	al manage

	: ToxicoWatch Co Abraham Kuype 8862 VS HARLIN	erstraat 6					
Customer no.	: 11492						
Customer location*	: ToxicoWatch Co	onsultancy					
REPORT							
Report code	: C6642137		Sam	oled by	: not by N	GAC	
Sample code	: U18324022617	4	ouni	,icu 2)			
Date of receipt	: 26-2-2024						
Analysis start date	: 26-2-2024						
Report date	: 14-3-2024						
			_				
	: 23TWS-MOS-H	:01					
Description	: 231W3-W03-H	01					
Variety The results in the report app		mplo ac received					
	iv to the investigated sa		_				
PAHs analysis		Results		Unit		Method	
Acenaphthylene		<1,0		μg/kg		GC-MS/MS	
Acenaphthene Fluoren		1,8		μg/kg μg/kg			
Phenanthrene		1,3 38,7		μg/kg μg/kg			
Anthracene		5,1		μg/kg			
Fluoranthene		182		µg/kg			
Pyren Bonzo(a)anthracano		153		μg/kg			
Benzo(a)anthracene Chrysen		82,1 112		μg/kg μg/kg			
Benzo(b)fluoranthene		131		µg/kg			
Benzo(k)fluoranthene		52,8		μg/kg			
Benzo(a)pyrene Dibenz(ah)anthracene		97,6 18,6		μg/kg μg/kg			
Benzo(g,h,i)perylene		86,4		μg/kg			
Indeno(1,2,3cd)pyrene		103		µg/kg			
Sum Chr, B(b)f, B(a)p, B(a	i)a	423		μg/kg			
	nave been outsourced.						
	nave been outsourced.						
	nave been outsourced.						
	nave been outsourced.						
	have been outsourced.						
	have been outsourced.						
	have been outsourced.						
	have been outsourced.						
	have been outsourced.						
	have been outsourced.						
	have been outsourced.						
	have been outsourced.						
	have been outsourced.						
	have been outsourced.						
	have been outsourced.						
Disclaimer The analysis on this sample <i>t</i>	have been outsourced.						
	have been outsourced.						General manager
	have been outsourced.						General manager
	have been outsourced.						General manager
	have been outsourced.						General manager
		written permission.					General manager

Customer name	: ToxicoWatch Co Abraham Kuype 8862 VS HARLIN	rstraat 6					
Customer no.	: 11492						
Customer location*	: ToxicoWatch Co	onsultancy					
REPORT							
Report code	: C6642138		Sam	pled by	: not by NG	AC	
Sample code	: U18324022617	5					
Date of receipt	: 26-2-2024	,					
Analysis start date	: 26-2-2024						
Report date	: 14-3-2024						
AMPLE*							
Description	: 23TWS-MOS-ZA	02					
		02					
Variety The results in the report appl	: eierschaal	mple as received					
	y to the investigated sa						
PAHs analysis		Results		Unit	<u>1</u>	Vethod	
Acenaphthylene		<1,0		μg/kg	C	GC-MS/MS	
Acenaphthene		<1,0		μg/kg			
Fluoren		1,3		µg/kg			
Phenanthrene Anthracene		38,1		μg/kg			
Fluoranthene		3,2 154		μg/kg μg/kg			
Pyren		114		μg/kg			
Benzo(a)anthracene		35,8		μg/kg			
Chrysen		84,1		µg/kg			
Benzo(b)fluoranthene		123		μg/kg			
Benzo(k)fluoranthene		42,9 68,7		μg/kg			
Benzo(a)pyrene Dibenz(ah)anthracene		14,1		μg/kg μg/kg			
Benzo(g,h,i)perylene		92,1		μg/kg			
Indeno(1,2,3cd)pyrene		113		µg/kg			
Sum Chr, B(b)f, B(a)p, B(a)a	312		μg/kg			
* information provided by cu	stomer		_				
Disclai <mark>mer</mark>							
The an <mark>alysis on this sample h</mark>	ave been outsourced.						
						Gen	eral manage
						Gen	eral manage
						Gen Gen	eral manage


CUSTOMER Customer name : ToxicoWatch Consultancy Abraham Kuyperstraat 6 8862 VS HARLINGEN : 11492 Customer no. Customer location* : ToxicoWatch Consultancy REPORT Report code : C6642139 Sampled by : not by NGAC Sample code : U183240226176 : 26-2-2024 Date of receipt Analysis start date : 26-2-2024 Rep<mark>ort date</mark> : 14-3-2024 SAMPLE* Description : 23TWS-MOS-VC01 Vari<mark>ety</mark> : eierschaal The results in the report apply to the investigated sample as received. PAHs analysis <u>Unit</u> Method <u>Results</u> Acenaphthylene <1,0 µg/kg GC-MS/MS <1,0 <1,0 13,5 1,3 48,2 μg/kg μg/kg μg/kg Acenaphthene Fluoren Phenanthrene μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg Anthracene Fluoranthene 39,3 16,3 Pyre<mark>n</mark> Benzo(a)anthracene Chrysen Benzo(b)fluoranthene 30,6 42,3 Benzo(k)fluoranthene 16,7 27,4 µg/kg Benzo(a)pyrene μg/kg μg/kg Dibenz(ah)anthracene 6,2 Benzo(g,h,i)perylene Indeno(1,2,3cd)pyrene 35,1 35,2 μg/kg μg/kg Sum Chr, B(b)f, B(a)p, B(a)a 117 µg/kg * information provided by customer Disclaimer The analysis on this sample have been outsourced. General manager

Partial reproduction of this report is only allowed with written permission.


CUSTOMER					
Customer name	: ToxicoWatch Co Abraham Kuype 8862 VS HARLIN	rstraat 6			
Customer no.	: 11492				
Customer location*	: ToxicoWatch Co	onsultancy			
REPORT					
Report code	: C6642577		Sampled by	: not by No	GAC
Sample code	: U183240228570)			
Date of receipt	: 28-2-2024				
Analysis start date	: 28-2-2024				
Rep <mark>ort date</mark>	: 14-3-2024				
SAMPLE*					
Description	: 23TWS-Mos-Hs	01			
Variety	: Mos				
The results in the report app		mple as received.			
PAHs analysis		Results	Un	iit	Method
Acenaphthylene		1,2	UP	/kg	GC-MS/MS
Acenaphthene		2,4		/kg	
Fluoren		2,5		/kg	
Phenanthrene		50,7		/kg	
Anthracene Fluoranthene		6,7		/kg	
Pyren		147 123		/kg /kg	
Benzo(a)anthracene		56,3		/kg	
Chrysen		83,4		/kg	
Benzo(b)fluoranthene		99,4		/kg	
Benzo(k)fluoranthene		36,9		/kg	
Benzo(a) pyrene Dibenz(ah) anthracene		63,9 11,9		/kg /kg	
Benzo(g,h,i)perylene		66,6		/kg	
Indeno(1,2,3cd)pyrene		63,4		/kg	
Sum Chr, B(b)f, B(a)p, B(a	a)a	303		/kg	
* information provided by c	ustomer				
Disclaimer					
The an <mark>alysis on this sample</mark>	have been outsourced.				

Partial reproduction of this report is only allowed with written permission.

CUSTOMER							
Customer name		/atch Con n Kuypers HARLING	traat 6				
Customer no.	: 11492						
Customer location*	: ToxicoW	/atch Con	sultancy				
REPORT							
Report code	: C664257	78		San	pled by	: not by NGA	2
Sample code	: U18324	0228571					
Date of receipt	: 28-2-20						
Analysis start date	: 28-2-202						
	: 14-3-202						
Report date	: 14-3-20	24		_			
SAMPLE*							
Description	: 23TWS-	Mos-Vc <mark>01</mark>					
Variety	: Mos						
The results in the report app	ply to the invest	tigated samp	ble as received.				
PAHs analysis		_	Results		Unit	м	ethod
Acenaphthylene			<1,0		μg/kg	60	-MS/MS
Acenaphthene			<1,0		μg/kg		-1415/1415
Fluoren			<1,0		μg/kg		
Phenanthrene			9,0		µg/kg		
Anthracene			<1,0		µg/kg		
Fluoranthene			38,1		μg/kg		
Pyren			30,9		μg/kg		
Benzo(a)anthracene			13,2		μg/kg		
Chrysen Benzo(b)fluoranthene			23,7 30,9		μg/kg μg/kg		
Benzo(k)fluoranthene			12,3		μg/kg		
Benzo(a)pyrene			20,4		μg/kg		
Dibenz(ah)anthracene			4,7		μg/kg		
Benzo(g,h,i)perylene			25,2		μg/kg		
Indeno(1,2,3cd)pyrene			22,5		μg/kg		
Sum Chr, B(b)f, B(a)p, B(a)a		88,2		μg/kg		
* information provided by c	ustomer	_		_		_	
Disclaimer							
	have been it.						
The analysis on this sample	have been outs	sourced.					
	have been outs	sourced.					

Partial reproduction of this report is only allowed with written permission.

Heavy metals

Pine needles 2 x

Mos 2 x

KLANT					
Klantnaam	: ToxicoWatch Co Abraham Kuype 8862 VS HARLIN	erstraat 6			
Klantnummer	: 11492				
Klantlocatie*	: ToxicoWatch Co	onsultancy			
RAPPORT					
Rapportnummer	: C6637488		Bemonsterd	: niet door NO	GAC
Monstercode	: EZB240226225				
Datum ontvangst	: 26-2-2024				
Star <mark>tdatum analyse</mark>	: 27-2-2024				
Datum rapport	: 5-3-2024				
Gebruikte methoden	: ICP-MS zwaremetale	en (A068+A095)			
MONSTER*					
Omschrijving	: 23TWS-PN-HS02	2			
Omschrijving Variëteit		2			
Vari <mark>ëteit</mark>	: pine needles	2 et onderzochte monster, zoals	deze is ontvangen.		
Vari <mark>ëteit</mark> De resultaten in het rappo	: pine needles	-	deze is ontvangen.		
Vari <mark>ëteit</mark> De resultaten in het rappo	: pine needles	-	deze is ontvangen.		
Vari <mark>ëteit</mark>	: pine needles	-	deze is ontvangen.		
Variëteit De resultaten in het rappo	: pine needles rt zijn van toepassing op hi	et onderzochte monster, zoals	Concen-		
Variëteit De resultaten in het rappo RESULTATEN Methode	: pine needles rt zijn van toepassing op hr Component	et onderzochte monster, zoals Eenheid	Concen- tratie		
Variëteit De resultaten in het rappo RESULTATEN Methode ICP-MS zwaremetalen	: pine needles rt zijn van toepassing op hr Component Aluminium (Al)	et onderzochte monster, zoals Eenheid mg/kg DS	Concen- tratie 99		
Variëteit De resultaten in het rappo RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen	: pine needles rt zijn van toepassing op ho Component Aluminium (Al) Zilver (Ag)	et onderzochte monster, zoals Eenheid mg/kg DS mg/kg DS	Concen- tratie 99 < 0.01		
Variëteit De resultaten in het rappo RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen	: pine needles rt zijn van toepassing op ho Component Aluminium (Al) Zilver (Ag) Arseen (As)	et onderzochte monster, zoals Eenheid mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 99 < 0.01 0.066		
Variëteit De resultaten in het rappo RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	: pine needles rt zijn van toepassing op he Component Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba)	et onderzochte monster, zoals Eenheid mg/kg DS mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 99 < 0.01 0.066 67		
Variëteit De resultaten in het rappo RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	: pine needles rt zijn van toepassing op hr Component Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd)	et onderzochte monster, zoals Eenheid mg/kg DS mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 99 < 0.01 0.066 67 < 0.01		
Variëteit De resultaten in het rappo RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	: pine needles rt zijn van toepassing op hr Component Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd) Cobalt (Co)	et onderzochte monster, zoals Eenheid mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 99 < 0.01 0.066 67 < 0.01 0.061		
Variëteit De resultaten in het rappo RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	: pine needles rt zijn van toepassing op hr Component Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd) Cobalt (Co) Kwik (Hg)	et onderzochte monster, zoals Eenheid mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 99 < 0.01 0.066 67 < 0.01 0.061 0.026		
Variëteit De resultaten in het rappo RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	: pine needles rt zijn van toepassing op hr Component Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd) Cobalt (Co) Kwik (Hg) Chroom (Cr)	et onderzochte monster, zoals Eenheid mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 99 < 0.01 0.066 67 < 0.01 0.061 0.026 0.28		

* informatie verkregen van de klant

Lood (Pb)

Tin (Sn)

Zink (Zn)

ICP-MS zwaremetalen

ICP-MS zwaremetalen

ICP-MS zwaremetalen

'<': Element niet gedetecteerd boven de weergegeven aantoonbaarheidsgrens. M.O. = Meetonzekerheid.

Algemeen directeur

ir. J. de Vriend

C6637488 - 1 / 1

Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

Normec Groen Agro Control | Distributieweg 1, 2645 EG Delfgauw | Nederland | T +31 (0)15 2572 511 | E info.agro@normecgroup.com Al onze werkzaamheden worden uitgevoerd onder de leveringsvoorwaarden zoals gedeponeerd bij de KvK Haaglanden, handelsregisternr. 27294457.

mg/kg DS

mg/kg DS

mg/kg DS

0.33

0.040

41

Klantnaam	Abraha	am Kuypei								
		S HARLIN	GEN							
Klantnummer Klantlocatie*	: 11492 : Toxicol	Watch Co	nsultancy							
	. ΤΟΧΙΟΟ	watch co	isuitancy							
RAPPORT		701			Dam					
Rapportnummer Monstercode	: C66377					nonsterd e monster		et door NG/ ewas	40	
Datum ontvangst					Typ	emonster	. 0	ewas		
Startdatum analys										
Datum rapport	: 5-3-202	24								
Gebruikte methoden	: ICP (A06	8+A094, eige	en methode, analys	se na destructie)						
MONSTER*										
Oms <mark>chrijving</mark>	: 23TWS	-PN-HS02								
Vari <mark>ëteit</mark>	: pine ne									
De resultaten in het ra	pport zijn van toep	assing op he	et onderzochte mo	nster, zoals deze	is ontvang	en.				
RESULTATEN		_								
Methode	Demonster			Canhaid		-tti-				
	Parameter			Eenheid		ntratie				
ICP	Mangaan (Mi	n)		mg/kg DS	55.1					
* informatie verkregen	van de klant									
									ι	neen directer
									Alger	neen directe
									Alger	neen directe
									Alger	meen directe

Klantnaam	: ToxicoWatch C Abraham Kuyp 8862 VS HARLI	erstraat 6			
Klantnummer	: 11492				
Klantlocatie*	: ToxicoWatch C	Consultancy			
RAPPORT					
Rapportnummer	: C6637489		Bemonsterd	: niet door NGAC	
Monstercode	: EZB240226226	5			
Datum ontvangst	: 26-2-2024				
Startdatum analyse	: 27-2-2024				
Datum rapport	: 5-3-2024				
Gebruikte methoden	: ICP-MS zwaremeta	alen (A068+A095)			
MONSTER*					
Omschrijving	: 23TWS-PN-VC	02 DEN			
Variëteit	: Mos				
De resultaten in het rappo	ort zijn van toepassing op	het onderzochte monster, zoals	deze is ontvangen.		
	ort zijn van toepassing op	het onderzochte monster, zoals	deze is ontvangen.		
De resultaten in het rappo RESULTATEN Methode	ort zijn van toepassing op	het onderzochte monster, zoals	deze is ontvangen. Concen- tratie		
RESULTATEN Methode			Concen-		
RESULTATEN	Component	Eenheid	Concen- tratie		
RESULTATEN Methode ICP-MS zwaremetalen	Component Aluminium (Al)	Eenheid mg/kg DS	Concen- tratie 155		
RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen	Component Aluminium (Al) Zilver (Ag)	Eenheid mg/kg DS mg/kg DS	Concen- tratie 155 < 0.01		
RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen	Component Aluminium (Al) Zilver (Ag) Arseen (As)	Eenheid mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 155 < 0.01 0.083		
RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Component Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba)	Eenheid mg/kg DS mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 155 < 0.01 0.083 61		
RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Component Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd)	Eenheid mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 155 < 0.01 0.083 61 0.011		
RESULTATEN Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Component Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd) Cobalt (Co)	Eenheid mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	Concen- tratie 155 < 0.01 0.083 61 0.011 < 0.05		

* informatie verkregen van de klant

Koper (Cu)

Nikkel (Ni)

Lood (Pb)

Tin (Sn)

Zink (Zn)

ICP-MS zwaremetalen

ICP-MS zwaremetalen

ICP-MS zwaremetalen

ICP-MS zwaremetalen

ICP-MS zwaremetalen

'<': Element niet gedetecteerd boven de weergegeven aantoonbaarheidsgrens. M.O. = Meetonzekerheid.

Algemeen directeur

ir. J. de Vriend

Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

Normec Groen Agro Control | Distributieweg 1, 2645 EG Delfgauw | Nederland | T +31 (0)15 2572 511 | E info.agro@normecgroup.com Al onze werkzaamheden worden uitgevoerd onder de leveringsvoorwaarden zoals gedeponeerd bij de KvK Haaglanden, handelsregisternr. 27294457.

mg/kg DS

mg/kg DS

mg/kg DS

mg/kg DS

mg/kg DS

3.<mark>1</mark>

0.<mark>24</mark>

0.41

0.053

36

Klantnaam	: ToxicoWatch Co Abraham Kuype	rstraat 6							
KI	8862 VS HARLIN	GEN							
Klantnummer Klantlocatie*	: 11492 : ToxicoWatch Co	onsultancy							
RAPPORT									
Rapportnummer	: C6637786			Bem	onsterd	: niet doo	r NGAC		
Monstercode	: EGT240226238			Type	monster	: Gewas			
Datum ontvangst	: 26-2-2024								
Startdatum analyse									
Datum rapport Gebruikte methoden	: 5-3-2024								
Gebruikte methoden	[:] ICP (A068+A094, eig	en methode, analyse	na destructie)				_		
MONSTER*									
Oms <mark>chrijving</mark>	: 23TWS-PN-VC0	2 DEN							
Variëteit	: eierschaal								
	oort zijn van toepassing op h	et onderzochte mons	ter, zoals deze	is ontvange	n.				
RESULTATEN									
Methode	Parameter	Fr	enheid	Concer	tratie				
ICP	Mangaan (Mn)		g/kg DS	13.0	liuue				
	Ivialigaali (Ivili)		g/kg D3	13.0					
								Algemeen o	lirecteu
	hriftelijke toestemming niet							A	lirecteu 2

ir. J. de Vriend

C6637491 - 1/1

KLANT									
Klantnaam	: ToxicoWatch C Abraham Kuyp	erstraat 6							
Klantnummer	8862 VS HARLI : 11492	INGEN							
Klantlocatie*	: ToxicoWatch (Consultancy							
RAPPORT									
Rapportnummer	: C6637491			Ben	nonsterd	: niet do	or NGAC		
Monstercode	: EZB240226228	3							
Datum ontvangst	: 26-2-2024								
Star <mark>tdatum analyse</mark>									
Datum rapport Gebruikte methoden	: 5-3-2024 : ICP-MS zwaremeta	alen (A068+A095)							
	. ICF-WIJ Zwarenieta			_			_		_
MONSTER*									
Omschrijving	: 23TWS-MOS-H	1502							
Vari <mark>ëteit</mark>	: Soil ort zijn van toepassing op	hot opdorzochto p	nonstor roals						
De resultaten in net rapp	or zijn van toepassing op	net onderzochten	nonster, zoais t	Jeze is ontvalig	en.				
RESULTATEN									
Methode	Component		Eenheid	Concen- tratie					
ICP-M <mark>S zwaremetalen</mark>	Aluminium (Al)		mg/kg DS	8789					
ICP-M <mark>S zwaremetalen</mark>	Zilver (Ag)		mg/kg DS	0.11					
ICP-MS zwaremetalen	Arseen (As)		mg/kg DS	3.9					
ICP-M <mark>S zwaremetalen</mark>	Barium (Ba)		mg/kg DS	141					
ICP-MS zwaremetalen	Cadmium (Cd)		mg/kg DS	1.3					
ICP-MS zwaremetalen	Cobalt (Co)		mg/kg DS	17					
ICP-MS zwaremetalen	Kwik (Hg)		mg/kg DS	0.086					
ICP-MS zwaremetalen	Chroom (Cr)		mg/kg DS	23					
ICP-MS zwaremetalen	Koper (Cu)		mg/kg DS	26					
ICP-MS zwaremetalen	Nikkel (Ni)		mg/kg DS	26					
ICP-MS zwaremetalen	Lood (Pb)		mg/kg DS	47					
ICP-MS zwaremetalen	Tin (Sn)		mg/kg DS	2.2					
ICP-MS zwaremetalen	Zink (Zn)		mg/kg DS	135					
* informatie verkregen va	an de klant								
M.O. = Meetonzekerheid.									
								Algemeen dir	ect
								~//	/
							的算法的	A	_
								A	\leq

Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

Klantnaam	Abraha	Watch Co Im Kuype S HARLIN										
Klantnummer	8862 V : 11492	S HARLIN	GEN									
Klantlocatie*		Watch Co	nsultancy									
ADDODT			,									
RAPPORT		702			D							
Rapportnummer Monstercode	: C66377					onsterd monster		niet door N Gewas	NGAC			
Datum ontvangst	: 26-2-20				Type	emonster	. (Jewas				
Startdatum analyse												
Datum rapport	: 5-3-202	24										
Gebruikte methoden	: ICP (A068	8+A094, eig	en methode, an	alyse na destructie)								
MONSTER*												
Omschrijving	: 23TWS	-MOS-HS	02									
Variëteit	: Soil		-									
De resultaten in het rap	port zijn van toep	assing op h	et onderzochte i	monster, zoals deze	is ontvange	en.						
RESULTATEN												
Methode	Parameter			Eenheid	Conce	ntratie						
ICP	Mangaan (Mr	n)		mg/kg DS	561							
* informatie verkregen v	ion de klant				-		-					
									5423 PI	Algerr	neen directa	зur
										Algerr	neen directo	eur.
										Algerr	neen directo	sur
										Algerr	neen directe	sur

Klantnaam	: ToxicoWatch Abraham Kuy 8862 VS HARL	perstraat 6						
Klantnummer	: 11492							
Klantlocatie*	: ToxicoWatch	Consultancy						
RAPPORT								
Rapportnummer	: C6637490			Ber	nonsterd	: niet do	oor NGAC	
Monstercode	: EZB24022622	7						
Datum ontvangst	: 26-2-2024							
Star <mark>tdatum analyse</mark>	: 27-2-2024							
Datum rapport	: 5-3-2024							
Gebruikte methoden	: ICP-MS zwaremet	alen (A068+A095)						
MONSTER*								
Omschrijving	: 23TWS-MOS-2	ZA01						
Variëteit	: Fruit - Fig							
De resultaten in het rapp	-	het onderzochte	monster, zoals o	leze is ontvang	en.			
RESULTATEN								
RESULTATEN Meth <mark>ode</mark>	Component		Eenheid	Concen- tratie				
	Component Aluminium (Al)		Eenheid mg/kg DS					
Methode				tratie				
Methode ICP-MS zwaremetalen ICP-MS zwaremetalen	Aluminium (Al)		mg/kg DS	tratie 14727				
Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Aluminium (Al) Zilver (Ag)		mg/kg DS mg/kg DS	tratie 14727 0.15				
Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Aluminium (Al) Zilver (Ag) Arseen (As)		mg/kg DS mg/kg DS mg/kg DS	tratie 14727 0.15 4.5				
Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Aluminium (Al) Zilver (Ag) Arscen (As) Barium (Ba)		mg/kg DS mg/kg DS mg/kg DS mg/kg DS	tratie 14727 0.15 4.5 216				
Methode ICP-MS zwaremetalen	Aluminium (Al) Zilver (Ag) Arscen (As) Barium (Ba) Cadmium (Cd)		mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	tratie 14727 0.15 4.5 216 2.2				
Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd) Cobalt (Co)		mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	tratie 14727 0.15 4.5 216 2.2 32				
Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Aluminium (Al) Zilver (Ag) Arscen (As) Barium (Ba) Cadmium (Cd) Cobalt (Co)		mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	tratie 14727 0.15 4.5 216 2.2 32 0.11				
Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd) Cobalt (Co) Kwik (Hg) Chroom (Cr)		mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	tratie 14727 0.15 4.5 216 2.2 32 0.11 64				
Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd) Cobalt (Co) Kwik (Hg) Chroom (Cr) Koper (Cu)		mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	tratie 14727 0.15 4.5 216 2.2 32 0.11 64 22				
Methode ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen ICP-MS zwaremetalen	Aluminium (Al) Zilver (Ag) Arseen (As) Barium (Ba) Cadmium (Cd) Cobalt (Co) Kwik (Hg) Chroom (Cr) Koper (Cu) Nikkel (Ni)		mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS mg/kg DS	tratie 14727 0.15 4.5 216 2.2 32 0.11 64 22 71				

M.O. = Meetonzekerheid.

Algemeen directeur

ir. J. de Vriend

C6637490 - 1/1

Dit rapport mag zonder schriftelijke toestemming niet anders dan in zijn geheel worden gereproduceerd.

KLANT						
Klantnaam	: ToxicoWatch	Consultancy				
	Abraham Ku					
Klantnummer	8862 VS HAR : 11492	LINGEN				
Klantlocatie*	: ToxicoWatch	Consultancy				
RAPPORT			Down		, nist de se NC	
Rapportnummer Monstercode	: C6637782 : EGT2402262	33		onsterd monster	: niet door NG : Gewas	AC
Datum ontvangst	: 26-2-2024		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Start <mark>datum analys</mark> e	e : 27-2-20 <mark>24</mark>					
Datum rapport	: 5-3-2024					
Gebruikte methoden	: ICP (A068+A094	, eigen methode, analyse na destruc	tie)			
MONSTER*						
Oms <mark>chrijving</mark>	: 23TWS-MOS	-ZA01				
Vari <mark>ëteit</mark>	: Fruit - Fig					
De resultaten in het rap	port zijn van toepassing o	op het onderzochte monster, zoals d	eze is ontvange	en.		
RESULTATEN						
Methode	Parameter	Eenheid	Conce	ntratie		
ICP	Mangaan (Mn)	mg/kg DS	918			
* info <mark>rmatie verkregen v</mark>	van de klant					
						Algemeen directeur
						Read
		niet anders dan in zijn geheel worde				ir. J. de Vriend
		2645 EG Delfgauw Nederland T r de leveringsvoorwaarden zoals geo				C6637782 - 1 / 1 4457.

www.toxicowatch.org